...
首页> 外文期刊>ACS nano >Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals
【24h】

Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals

机译:非外延Au / CdS核/壳纳米晶体中激子寿命的延长

获取原文
获取原文并翻译 | 示例
           

摘要

The ability of metal nanoparticles to capture light through plasmon excitations offers an opportunity for enhancing the optical absorption of plasmon-coupled semiconductor materials via energy transfer. This process, however, requires that the semiconductor component is electrically insulated to prevent a "backward" charge flow into metal and interfacial states, which causes a premature dissociation of excitons. Here we demonstrate that such an energy exchange can be achieved on the nanoscale by using nonepitaxial Au/CdS core/shell nanocomposites. These materials are fabricated via a multistep cation exchange reaction, which decouples metal and semiconductor phases leading to fewer interfacial defects. Ultrafast transient absorption measurements confirm that the lifetime of excitons in the CdS shell (τ≈300 ps) is much longer than lifetimes of excitons in conventional, reduction-grown Au/CdS heteronanostructures. As a result, the energy of metal nanoparticles can be efficiently utilized by the semiconductor component without undergoing significant nonradiative energy losses, an important property for catalytic or photovoltaic applications. The reduced rate of exciton dissociation in the CdS domain of Au/CdS nanocomposites was attributed to the nonepitaxial nature of Au/CdS interfaces associated with low defect density and a high potential barrier of the interstitial phase.
机译:金属纳米颗粒通过等离子体激元激发捕获光的能力提供了通过能量转移增强等离子体激元耦合的半导体材料的光吸收的机会。但是,该过程需要将半导体组件电绝缘,以防止“反向”电荷流入金属和界面态,从而导致激子过早解离。在这里,我们证明通过使用非外延Au / CdS核/壳纳米复合材料可以在纳米级实现这种能量交换。这些材料是通过多步阳离子交换反应制造的,该反应使金属相和半导体相解耦,从而减少了界面缺陷。超快速瞬态吸收测量结果证实,CdS壳中激子的寿命(τ≈300ps)比传统的,还原生长的Au / CdS异质纳米结构中的激子的寿命长得多。结果,金属纳米颗粒的能量可以被半导体组件有效地利用,而不会遭受显着的非辐射能量损失,这是催化或光伏应用的重要性能。 Au / CdS纳米复合材料的CdS域中激子解离速率的降低归因于Au / CdS界面的非外延性质,其与低缺陷密度和间隙相的高势垒有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号