...
首页> 外文期刊>ACS nano >Reliable Memristive Switching Memory Devices Enabled by Densely Packed Silver Nanocone Arrays as Electric -Field Concentrators
【24h】

Reliable Memristive Switching Memory Devices Enabled by Densely Packed Silver Nanocone Arrays as Electric -Field Concentrators

机译:通过密集包装的银纳米锥阵列作为电场集中器,实现了可靠的忆阻开关存储设备

获取原文
获取原文并翻译 | 示例
           

摘要

Memristor devices based on electrochemical metallization operate through electrochemical formation/dissolution of nanoscale metallic filaments, and they are considered a promising future nonvolatile memory because of their outstanding characteristics over conventional charge-based memories. However, nanoscale conductive paths or filaments precipitated from the redox process of metallic elements are randomly formed inside oxides, resulting in unexpected and stochastic memristive switching parameters including the operating voltage and the resistance state. Here, we present the guided formation of conductive filaments in Ag nanocone/SiO, nanomesh/Pt memristors fabricated by high-resolution nanotransfer printing. Consequently, the uniformity of the memristive switching behavior is significantly improved by the existence of electric-field concentrator arrays consisting of Ag nanocones embedded in SiO2 nanomesh structures. This selective and controlled filament growth was experimentally supported by analyzing simultaneously the surface morphology and current mapping results using conductive atomic force microscopy. Moreover, stable multilevel switching operations with four discrete conduction states were achieved by the nanopatterned memristor device, demonstrating its potential in high density nanoscale memory devices.
机译:基于电化学金属化的忆阻器器件通过纳米级金属丝的电化学形成/溶解来运行,并且由于其优于常规基于电荷的存储器的出色特性,它们被认为是有前途的未来非易失性存储器。但是,从金属元素的氧化还原过程中析出的纳米级导电路径或细丝会在氧化物内部随机形成,从而导致意外的和随机的忆阻开关参数,包括工作电压和电阻状态。在这里,我们介绍了通过高分辨率纳米转移印刷制造的Ag纳米锥/ SiO,纳米网/ Pt忆阻器中的导电丝的引导形成。因此,由于存在由嵌入SiO2纳米网状结构中的Ag纳米锥组成的电场集中器阵列,忆阻开关行为的均匀性得到了显着改善。通过使用导电原子力显微镜同时分析表面形态和电流映射结果,实验上支持了这种选择性和受控的灯丝生长。此外,通过纳米图案化的忆阻器器件实现了具有四个离散导通状态的稳定多级开关操作,这证明了其在高密度纳米级存储器件中的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号