...
首页> 外文期刊>ACS nano >Nanoscale-Barrier Formation Induced by Low-Dose Electron-Beam Exposure in Ultrathin MoS2 Transistors
【24h】

Nanoscale-Barrier Formation Induced by Low-Dose Electron-Beam Exposure in Ultrathin MoS2 Transistors

机译:低剂量电子束暴露在超薄MoS2晶体管中引起的纳米级势垒形成。

获取原文
获取原文并翻译 | 示例
           

摘要

Utilizing an innovative combination of scanning-probe and spectroscopic techniques, supported by first-principles calculations, we demonstrate how electron-beam exposure of field-effect transistors, implemented from ultrathin molybdenum disulfide (MoS2), may cause nanoscale structural modifications that in turn significantly modify the electrical operation of these devices. Quite surprisingly, these modifications are induced by even the relatively low electron doses used in conventional electron-beam lithography, which are found to induce compressive strain in the atomically thin MoS2. Likely arising from sulfur-vacancy formation in the exposed regions, the strain gives rise to a local widening of the MoS2 bandgap, an idea that is supported both by our experiment and by the results of first-principles calculations. A nano scale potential barrier develops at the boundary between exposed and unexposed regions and may cause extrinsic variations in the resulting electrical characteristics exhibited by the transistor. The widespread use of electron-beam lithography in nanofabrication implies that the presence of such strain must be carefully considered when seeking to harness the potential of atomically thin transistors. At the same time, this work also promises the possibility of exploiting the strain as a means to achieve "bandstructure engineering" in such devices.
机译:利用第一原理计算支持的扫描探针和光谱技术的创新结合,我们证明了由超薄二硫化钼(MoS2)实施的场效应晶体管的电子束曝光如何会引起纳米级结构修饰,进而显着改变结构修改这些设备的电气操作。令人惊讶的是,甚至在常规电子束光刻中使用的相对较低的电子剂量也会引起这些修饰,这被认为会在原子上薄的MoS2中引起压缩应变。可能由暴露区域中的硫空位形成引起,该应变导致MoS2带隙的局部变宽,这一想法得到我们的实验和第一性原理计算结果的支持。纳米级势垒在暴露和未暴露区域之间的边界处形成,并可能导致晶体管表现出的电学特性发生外在变化。电子束光刻技术在纳米制造中的广泛应用意味着,在试图利用原子薄晶体管的潜力时,必须仔细考虑这种应变的存在。同时,这项工作还有望利用应变作为在此类设备中实现“带结构工程”的一种手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号