...
首页> 外文期刊>ACS nano >Size-dependent subnanometer Pd cluster (Pd_4, Pd_6, and Pd_(17)) water oxidation electrocatalysis
【24h】

Size-dependent subnanometer Pd cluster (Pd_4, Pd_6, and Pd_(17)) water oxidation electrocatalysis

机译:尺寸相关的亚纳米Pd团簇(Pd_4,Pd_6和Pd_(17))水氧化电催化

获取原文
获取原文并翻译 | 示例
           

摘要

Water oxidation is a key catalytic step for electrical fuel generation. Recently, significant progress has been made in synthesizing electrocatalytic materials with reduced overpotentials and increased turnover rates, both key parameters enabling commercial use in electrolysis or solar to fuels applications. The complexity of both the catalytic materials and the water oxidation reaction makes understanding the catalytic site critical to improving the process. Here we study water oxidation in alkaline conditions using size-selected clusters of Pd to probe the relationship between cluster size and the water oxidation reaction. We find that Pd_4 shows no reaction, while Pd_6 and Pd_(17) deposited clusters are among the most active (in terms of turnover rate per Pd atom) catalysts known. Theoretical calculations suggest that this striking difference may be a demonstration that bridging Pd-Pd sites (which are only present in three-dimensional clusters) are active for the oxygen evolution reaction in Pd_6O_6. The ability to experimentally synthesize size-specific clusters allows direct comparison to this theory. The support electrode for these investigations is ultrananocrystalline diamond (UNCD). This material is thin enough to be electrically conducting and is chemically/electrochemically very stable. Even under the harsh experimental conditions (basic, high potential) typically employed for water oxidation catalysts, UNCD demonstrates a very wide potential electrochemical working window and shows only minor evidence of reaction. The system (soft-landed Pd_4, Pd_6, or Pd_(17) clusters on a UNCD Si-coated electrode) shows stable electrochemical potentials over several cycles, and synchrotron studies of the electrodes show no evidence for evolution or dissolution of either the electrode material or the clusters.
机译:水氧化是产生电燃料的关键催化步骤。近年来,在合成电催化材料方面已经取得了重大进展,该电催化材料具有降低的过电势和提高的周转率,这两个关键参数均允许在电解或太阳能到燃料应用中进行商业应用。催化材料和水氧化反应的复杂性使得了解催化部位对于改进工艺至关重要。在这里,我们使用尺寸选择的Pd簇研究碱性条件下的水氧化,以探索簇大小与水氧化反应之间的关系。我们发现Pd_4没有反应,而Pd_6和Pd_(17)沉积的簇是已知最活跃的催化剂(就每个Pd原子的周转率而言)。理论计算表明,这种惊人的差异可能表明桥接的Pd-Pd位点(仅存在于三维簇中)对于Pd_6O_6中的氧释放反应具有活性。通过实验合成特定于大小的簇的能力可以直接与此理论进行比较。用于这些研究的支持电极是超纳米晶金刚石(UNCD)。该材料足够薄以导电,并且在化学/电化学上非常稳定。即使在通常用于水氧化催化剂的苛刻的实验条件下(碱性,高电势),UNCD仍显示出非常宽的电势电化学工作范围,并且仅显示了很小的反应证据。该系统(在UNCD硅涂层的电极上软着陆的Pd_4,Pd_6或Pd_(17)簇)在多个循环中显示出稳定的电化学势,并且电极的同步加速研究表明,没有证据表明两种电极材料均会演化或溶解或集群。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号