...
首页> 外文期刊>ACS nano >Carbon-encapsulated Fe_3O_4 nanoparticles as a high-rate lithium ion battery anode material
【24h】

Carbon-encapsulated Fe_3O_4 nanoparticles as a high-rate lithium ion battery anode material

机译:碳包裹的Fe_3O_4纳米粒子作为高速率锂离子电池负极材料

获取原文
获取原文并翻译 | 示例
           

摘要

A facile and scalable in situ synthesis strategy is developed to fabricate carbon-encapsulated Fe_3O_4 nanoparticles homogeneously embedded in two-dimensional (2D) porous graphitic carbon nanosheets (Fe _3O_4@C@PGC nanosheets) as a durable high-rate lithium ion battery anode material. With assistance of the surface of NaCl particles, 2D Fe@C@PGC nanosheets can be in situ synthesized by using the Fe(NO _3)_3·9H_2O and C6H 12O6 as the metal and carbon precursor, respectively. After annealing under air, the Fe@C@PGC nanosheets can be converted to Fe _3O_4@C@PGC nanosheets, in which Fe_3O_4 nanoparticles (~18.2 nm) coated with conformal and thin onion-like carbon shells are homogeneously embedded in 2D high-conducting carbon nanosheets with a thickness of less than 30 nm. In the constructed architecture, the thin carbon shells can avoid the direct exposure of encapsulated Fe_3O_4 to the electrolyte and preserve the structural and interfacial stabilization of Fe_3O_4 nanoparticles. Meanwhile, the flexible and conductive PGC nanosheets can accommodate the mechanical stress induced by the volume change of embedded Fe_3O_4@C nanoparticles as well as inhibit the aggregation of Fe_3O_4 nanoparticles and thus maintain the structural and electrical integrity of the Fe_3O _4@C@PGC electrode during the lithiation/delithiation processes. As a result, this Fe_3O_4@C@PGC electrode exhibits superhigh rate capability (858, 587, and 311 mAh/g at 5, 10, and 20 °C, respectively, 1 C = 1 A/g) and extremely excellent cycling performance at high rates (only 3.47% capacity loss after 350 cycles at a high rate of 10 °C), which is the best one ever reported for an Fe_3O_4-based electrode including various nanostructured Fe_3O_4 anode materials, composite electrodes, etc.
机译:开发了一种简便且可扩展的原位合成策略,以制造均匀包埋在二维(2D)多孔石墨碳纳米片(Fe _3O_4 @ C @ PGC纳米片)中的碳封装的Fe_3O_4纳米颗粒,作为耐用的高速率锂离子电池负极材料。借助于NaCl颗粒的表面,可以分别使用Fe(NO _3)_3·9H_2O和C6H 12O6作为金属和碳前体原位合成2D Fe @ C @ PGC纳米片。在空气中退火后,可以将Fe @ C @ PGC纳米片转变为Fe _3O_4 @ C @ PGC纳米片,其中,涂覆有保形和洋葱状薄碳壳的Fe_3O_4纳米粒子(〜18.2 nm)均匀地嵌入到二维高-导电碳纳米片的厚度小于30 nm。在构造的架构中,薄碳壳可以避免封装的Fe_3O_4直接暴露于电解质,并保持Fe_3O_4纳米粒子的结构和界面稳定性。同时,柔性导电PGC纳米片可以适应因嵌入Fe_3O_4 @ C纳米粒子的体积变化而引起的机械应力,并抑制Fe_3O_4纳米粒子的聚集,从而保持Fe_3O_4 @ C @ PGC电极的结构和电完整性。在锂化/脱锂过程中。结果,这种Fe_3O_4 @ C @ PGC电极显示出超高倍率能力(在5、10和20°C下分别为858、587和311 mAh / g,1 C = 1 A / g)和极好的循环性能在高速率下(在10°C的高速率下进行350次循环后,容量损失仅为3.47%),这是有报道的基于Fe_3O_4的电极(包括各种纳米结构的Fe_3O_4阳极材料,复合电极等)中最好的一种。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号