...
首页> 外文期刊>ACS nano >Enhanced harvesting of red photons in nanowire solar cells: Evidence of resonance energy transfer
【24h】

Enhanced harvesting of red photons in nanowire solar cells: Evidence of resonance energy transfer

机译:纳米线太阳能电池中红色光子的增强捕获:共振能量转移的证据

获取原文
获取原文并翻译 | 示例
           

摘要

Modern excitonic solar cells efficiently harvest photons in the 350-650 nm spectral range; however, device efficiencies are typically limited by poor quantum yields for red and near-infrared photons. Using F?rster-type resonance energy transfer from zinc phthalocyanine donor molecules to ruthenium polypyridine complex acceptors, we demonstrate a four-fold increase in quantum yields for red photons in dye-sensitized nanowire array solar cells. The dissolved donor and surface anchored acceptor molecules are not tethered to each other, through either a direct chemical bond or a covalent linker layer. The spatial confinement of the electrolyte imposed by the wire-to-wire spacing of the close-packed nanowire array architecture ensures that the distances between a significant fraction of donors and acceptors are within a Forster radius. The critical distance for energy transfer from an isolated donor chromophore to a self-assembled monolayer of acceptors on a plane follows the inverse fourth power instead of the inverse sixth power relation. Consequently, we observe near quantitative energy transfer efficiencies in our devices. Our results represent a new design paradigm in excitonic solar cells and show it is possible to more closely match the spectral response of the device to the AM 1.5 solar spectrum through use of electronic energy transfer.
机译:现代激子太阳能电池可有效收集350-650 nm光谱范围内的光子;但是,器件效率通常受红色和近红外光子量子产率差的限制。使用从锌酞菁供体分子到钌聚吡啶配合物受体的Fsterster型共振能量转移,我们证明了染料敏化纳米线阵列太阳能电池中红色光子的量子产率提高了四倍。溶解的供体和表面锚定的受体分子不会通过直接化学键或共价接头层相互束缚。由紧密堆积的纳米线阵列结构的线对线间隔施加的电解质的空间限制确保了大部分施主和受主之间的距离在Forster半径内。能量从平面上的离体供体发色团转移到受体的自组装单分子层的临界距离遵循逆四次方而不是逆六次方关系。因此,我们在设备中观察到接近定量的能量传输效率。我们的结果代表了激子太阳能电池的新设计范例,并表明可以通过电子能量转移使该设备的光谱响应与AM 1.5太阳光谱更紧密地匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号