...
首页> 外文期刊>ACS nano >Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes
【24h】

Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes

机译:氮掺杂石墨烯和单壁碳纳米管中电子束损伤的原子描述

获取原文
获取原文并翻译 | 示例
           

摘要

By combining ab initio simulations with state-of-the-art electron microscopy and electron energy loss spectroscopy, we study the mechanism of electron beam damage in nitrogen-doped graphene and carbon nanotubes. Our results show that the incorporation of nitrogen atoms results in noticeable knock-on damage in these structures already at an acceleration voltage of 80 kV, at which essentially no damage is created in pristine structures at corresponding doses. Contrary to an early estimate predicting rapid destruction via sputtering of the nitrogen atoms, in the case of substitutional doping, damage is initiated by displacement of carbon atoms neighboring the nitrogen dopant, leading to the conversion of substitutional dopant sites into pyridinic ones. Although such events are relatively rare at 80 kV, they become significant at higher voltages typically used in electron energy loss spectroscopy studies. Correspondingly, we measured an energy loss spectrum time series at 100 kV that provides direct evidence for such conversions in nitrogen-doped single-walled carbon nanotubes, in excellent agreement with our theoretical prediction. Besides providing an improved understanding of the irradiation stability of these structures, we show that structural changes cannot be neglected in their characterization employing high-energy electrons.
机译:通过从头算模拟与最新的电子显微镜和电子能量损失谱相结合,我们研究了氮掺杂石墨烯和碳纳米管中电子束损伤的机理。我们的结果表明,在加速电压为80 kV的情况下,氮原子的掺入会在这些结构中引起明显的连锁破坏,在该电压下,相应剂量的原始结构基本上不会产生破坏。与预测通过氮原子的溅射将快速破坏的早期估计相反,在取代掺杂的情况下,损坏是由邻近氮掺杂剂的碳原子移位引发的,从而导致取代掺杂剂位点转化为吡啶鎓位点。尽管此类事件在80 kV时相对很少见,但在电子能量损失谱研究中通常使用的更高电压下,它们变得尤为重要。相应地,我们在100 kV下测量了能量损失谱的时间序列,这为掺氮单壁碳纳米管中的这种转化提供了直接的证据,与我们的理论预测非常吻合。除了提供对这些结构的辐照稳定性的更好理解之外,我们还表明,使用高能电子表征结构变化时不能忽略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号