...
首页> 外文期刊>ACS nano >Facilitated ion transport in all-solid-state flexible supercapacitors
【24h】

Facilitated ion transport in all-solid-state flexible supercapacitors

机译:促进全固态柔性超级电容器中的离子迁移

获取原文
获取原文并翻译 | 示例
           

摘要

The realization of highly flexible and all-solid-state energy-storage devices strongly depends on both the electrical properties and mechanical integrity of the constitutive materials and the controlled assembly of electrode and solid electrolyte. Herein we report the preparation of all-solid-state flexible supercapacitors (SCs) through the easy assembly of functionalized reduced graphene oxide (f-RGO) thin films (as electrode) and solvent-cast Nafion electrolyte membranes (as electrolyte and separator). In particular, the f-RGO-based SCs (f-RGO-SCs) showed a 2-fold higher specific capacitance (118.5 F/g at 1 A/g) and rate capability (90% retention at 30 A/g) compared to those of all-solid-state graphene SCs (62.3 F/g at 1A/g and 48% retention at 30 A/g). As proven by the 4-fold faster relaxation of the f-RGO-SCs than that of the RGO-SCs and more capacitive behavior of the former at the low-frequency region, these results were attributed to the facilitated ionic transport at the electrical double layer by means of the interfacial engineering of RGO by Nafion. Moreover, the superiority of all-solid-state flexible f-RGO-SCs was demonstrated by the good performance durability under the 1000 cycles of charging and discharging due to the mechanical integrity as a consequence of the interconnected networking structures. Therefore, this research provides new insight into the rational design and fabrication of all-solid-state flexible energy-storage devices as well as the fundamental understanding of ion and charge transport at the interface.
机译:高度灵活和全固态储能装置的实现在很大程度上取决于构成材料的电性能和机械完整性以及电极和固体电解质的受控组装。本文中,我们报告了通过易于组装的功能化还原氧化石墨烯(f-RGO)薄膜(作为电极)和溶剂浇铸的Nafion电解质膜(作为电解质和隔膜)的制备,来制备全固态柔性超级电容器(SCs)。特别是,基于f-RGO的SC(f-RGO-SC)的比电容(在1 A / g时为118.5 F / g)和速率能力(在30 A / g时保持90%)显示出高出2倍的容量达到全固态石墨烯SC的那些(1A / g为62.3 F / g,30 A / g保留48%)。 f-RGO-SCs的弛豫速度比RGO-SCs快4倍,并且前者在低频区域具有更大的电容特性,这证明了这些结果归因于电双电荷的促进借助Nafion的RGO界面工程进行层切割。此外,由于互连网络结构的机械完整性,在1000次充放电循环后的良好性能耐久性证明了全固态柔性f-RGO-SC的优越性。因此,这项研究为全固态柔性储能器件的合理设计和制造以及对界面处的离子和电荷传输的基本理解提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号