...
首页> 外文期刊>ACS nano >Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials
【24h】

Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials

机译:从包裹细胞的可生物降解纳米生物材料中释放磁性纳米颗粒

获取原文
获取原文并翻译 | 示例
           

摘要

The future of tissue engineering requires development of intelligent biomaterials using nanoparticles. Magnetic nanoparticles (MNPs) have several applications in biology and medicine; one example is Food and Drug Administration (FDA)-approved contrast agents in magnetic resonance imaging. Recently, MNPs have been encapsulated within cell-encapsulating hydrogels to create novel nanobiomaterials (i.e., M-gels), which can be manipulated and assembled in magnetic fields. The M-gels can be used as building blocks for bottom-up tissue engineering to create 3D tissue constructs. For tissue engineering applications of M-gels, it is essential to study the release of encapsulated MNPs from the hydrogel polymer network and the effect of MNPs on hydrogel properties, including mechanical characteristics, porosity, swelling behavior, and cellular response (e.g., viability, growth). Therefore, we evaluated the release of MNPs from photocrosslinkable gelatin methacrylate hydrogels as the polymer network undergoes biodegradation using inductively coupled plasma atomic emission spectroscopy. MNP release correlated linearly with hydrogel biodegradation rate with correlation factors (Pearson product moment correlation coefficient) of 0.96 ± 0.03 and 0.99 ± 0.01 for MNP concentrations of 1% and 5%, respectively. We also evaluated the effect of MNPs on hydrogel mechanical properties, porosity, and swelling behavior, as well as cell viability and growth in MNP-encapsulating hydrogels. Fibroblasts encapsulated with MNPs in hydrogels remained viable (>80% at t = 144 h) and formed microtissue constructs in culture (t = 144 h). These results indicated that MNP-encapsulating hydrogels show promise as intelligent nanobiomaterials, with great potential to impact broad areas of bioengineering, including tissue engineering, regenerative medicine, and pharmaceutical applications.
机译:组织工程的未来需要开发使用纳米粒子的智能生物材料。磁性纳米粒子(MNP)在生物学和医学中有多种应用;一个例子是食品和药物管理局(FDA)批准的磁共振成像造影剂。近来,MNP已经被包封在细胞包封的水凝胶中以产生新颖的纳米生物材料(即,M-凝胶),其可以在磁场中被操纵和组装。 M凝胶可用作自下而上组织工程以创建3D组织构建体的基础。对于M凝胶的组织工程应用,必须研究包封的MNP从水凝胶聚合物网络中的释放以及MNP对水凝胶特性(包括机械特性,孔隙率,溶胀行为和细胞反应(例如,活力,增长)。因此,我们评估了当使用感应耦合等离子体原子发射光谱法对聚合物网络进行生物降解时,光可交联的甲基丙烯酸明胶甲基丙烯酸水凝胶中MNP的释放。对于1%和5%的MNP浓度,MNP释放与水凝胶生物降解率呈线性相关,相关因子(皮尔森积矩相关系数)分别为0.96±0.03和0.99±0.01。我们还评估了MNPs对水凝胶机械性能,孔隙率和溶胀行为以及细胞活力和MNP封装水凝胶生长的影响。在水凝胶中用MNP包裹的成纤维细胞仍然存活(在t = 144 h时> 80%),并在培养中形成微组织构建体(t = 144 h)。这些结果表明,包裹MNP的水凝胶显示出作为智能纳米生物材料的前景,具有巨大的潜力来影响生物工程的广泛领域,包括组织工程,再生医学和制药应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号