...
首页> 外文期刊>ACS nano >Site-specific imaging of elemental steps in dehydration of diols on TiO_2(110)
【24h】

Site-specific imaging of elemental steps in dehydration of diols on TiO_2(110)

机译:TiO_2(110)上二醇脱水的元素步骤的位点成像

获取原文
获取原文并翻译 | 示例
           

摘要

Scanning tunneling microscopy is employed to follow elemental steps in conversion of ethylene glycol and 1,3-propylene glycol on partially reduced TiO_2(110) as a function of temperature. Mechanistic details about the observed processes are corroborated by density functional theory calculations. The use of these two diol reactants allows us to compare and contrast the chemistries of two functionally similar molecules with different steric constraints, thereby allowing us to understand how molecular geometry may influence the observed chemical reactivity. We find that both glycols initially adsorb on Ti sites, where a dynamic equilibrium between molecularly bound and deprotonated species is observed. As the diols start to diffuse along the Ti rows above 230 K, they irreversibly dissociate upon encountering bridging oxygen vacancies. Surprisingly, two dissociation pathways, one via O-H and the other via C-O bond scission, are observed. Theoretical calculations suggest that the differences in the C-O/O-H bond breaking processes are the result of steric factors enforced upon the diols by the second Ti-bound OH group. Above ~400 K, a new stable intermediate centered on the bridging oxygen (O_b) row is observed. Combined experimental and theoretical evidence shows that this intermediate is most likely a new dioxo species. Further annealing leads to sequential C-O_b bond cleavage and alkene desorption above ~500 K. Simulations demonstrate that the sequential C-O_b bond breaking process follows a homolytic diradical pathway, with the first C-O_b bond breaking event accompanied with a nonadiabatic electron transfer within the TiO_2(110) substrate.
机译:扫描隧道显微镜用于追踪部分还原的TiO_2(110)上的乙二醇和1,3-丙二醇随温度变化的基本步骤。密度泛函理论计算证实了有关观测过程的机械细节。这两种二醇反应物的使用使我们能够比较和对比具有不同空间限制的两个功能相似的分子的化学性质,从而使我们能够了解分子的几何形状如何影响观察到的化学反应性。我们发现两种乙二醇最初都吸附在Ti位点上,在那里观察到分子结合和去质子化物种之间的动态平衡。随着二醇开始在230 K以上的Ti行中扩散,遇到桥接氧空位时,它们不可逆地解离。令人惊讶地,观察到两个解离途径,一个通过O-H,另一个通过C-O键断裂。理论计算表明,C-O / O-H键断裂过程的差异是第二个与Ti结合的OH基团对二醇施加的空间位阻的结果。在〜400 K以上,观察到了一个新的稳定中间体,其中心为桥接氧(O_b)排。综合实验和理论证据表明,该中间体极有可能是一种新的二氧杂种。进一步的退火会导致C-O_b键断裂和烯烃在〜500 K以上解吸。模拟表明,连续的C-O_b键断裂过程遵循均裂双自由基途径,第一个C-O_b键断裂事件伴随非绝热电子转移在TiO_2(110)衬底中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号