...
首页> 外文期刊>ACS nano >Photon Energy Upconverting Nanopaper: A Bioinspired Oxygen Protection Strategy
【24h】

Photon Energy Upconverting Nanopaper: A Bioinspired Oxygen Protection Strategy

机译:光子能量上转换纳米纸:生物启发的氧气保护策略。

获取原文
获取原文并翻译 | 示例
           

摘要

The development of solid materials which are able to upconvert optical radiation into photons of higher energy is attractive for many applications such as photocatalytic cells and photovoltaic devices. However, to fully exploit triplet-triplet annihilation photon energy upconversion (TTA-UC), oxygen protection is imperative because molecular oxygen is an ultimate quencher of the photon upconversion process. So far, reported solid TTA-UC materials have focused mainly on elastomeric matrices with low barrier properties because the TTA-UC efficiency generally drops significantly in glassy and semicrystalline matrices. To overcome this limit, for example, combine effective and sustainable annihilation upconversion with exhaustive oxygen protection of dyes, we prepare a sustainable solid-state-like material based on nanocellulose. Inspired by the structural buildup of leaves in Nature, we compartmentalize the dyes in the liquid core of nanocellulose-based capsules which are then further embedded in a cellulose nanofibers (NFC) matrix. Using pristine cellulose nanofibers, a sustainable and environmentally friendly functional nanomaterial with ultrahigh barrier properties is achieved. Also, an ensemble of sensitizers and emitter compounds are encapsulated, which allow harvesting of the energy of the whole deep-red sunlight region. The films demonstrate excellent lifetime in synthetic air (20.5/79.5, O_2/N_2);even after 1 h operation, the intensity of the TTA-UC signal decreased only 7.8% for the film with 8.8 μm thick NFC coating. The lifetime can be further modulated by the thickness of the protective NFC coating. For comparison, the lifetime of TTA-UC in liquids exposed to air is on the level of seconds to minutes due to fast oxygen quenching.
机译:能够将光辐射上转换为更高能量的光子的固体材料的开发对于许多应用(例如光催化电池和光伏设备)具有吸引力。然而,要充分利用三重态-三重态an灭光子能量上转换(TTA-UC),必须进行氧气保护,因为分子氧是光子上转换过程的最终淬灭剂。到目前为止,已报道的固体TTA-UC材料主要集中在低阻隔性能的弹性体基质上,因为TTA-UC效率通常在玻璃态和半晶态基质中显着下降。为了克服此限制,例如,将有效且可持续的an灭上转换与染料的详尽氧气保护相结合,我们基于纳米纤维素制备了可持续的固态样材料。受自然界中叶子的结构堆积的启发,我们将染料分隔在基于纳米纤维素的胶囊液芯中,然后将其进一步嵌入纤维素纳米纤维(NFC)基质中。使用原始纤维素纳米纤维,可以实现具有超高阻隔性能的可持续且环保的功能纳米材料。同样,封装了敏化剂和发射体化合物,可以收集整个深红色阳光区域的能量。该膜在合成空气(20.5 / 79.5,O_2 / N_2)中表现出出色的使用寿命;即使在操作1小时后,对于具有8.8μm厚NFC涂层的膜,TTA-UC信号的强度也仅降低了7.8%。可以通过保护性NFC涂层的厚度进一步调节寿命。为了进行比较,由于快速的氧气淬火,TTA-UC在暴露于空气中的液体的寿命为数秒至数分钟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号