...
首页> 外文期刊>ACS nano >Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF4: Yb~(3+),Er~(3+) Nanoparticles: Maxwell versus F?rster
【24h】

Plasmon Enhancement Mechanism for the Upconversion Processes in NaYF4: Yb~(3+),Er~(3+) Nanoparticles: Maxwell versus F?rster

机译:NaYF4:Yb〜(3 +),Er〜(3+)纳米粒子中上转换过程的等离子体增强机理:麦克斯韦与弗斯特

获取原文
获取原文并翻译 | 示例
           

摘要

Rare-earth activated upconversion materials are receiving renewed attention for their potential applications in bioimaging and solar energy conversion. To enhance the upconversion efficiency, surface plasmon has been employed but the reported enhancements vary widely and the exact enhancement mechanisms are not clearly understood. In this study, we synthesized upconversion nanoparticles (UCNPs) coated with amphiphilic polymer which makes UCNPs water soluble and negatively charged. We then designed and fabricated a silver nanograting on which three monolayers of UCNPs were deposited by polyelectrolyte-mediated layer-by-layer deposition technique. The final structures exhibited surface plasmon resonance at the absorption wavelength of UCNP. The green and red photoluminescence intensity of UCNPs on nanograting was up to 16 and 39 times higher than the reference sample deposited on flat silver film, respectively. A thorough analysis of rate equations showed that the enhancement was due entirely to absorption enhancement in the strong excitation regime, while the enhancement of both absorption and F?rster energy transfer contribute in the weak excitation regime. The Purcell factor was found to be small and unimportant because the fast nonradiative decay dominates the relaxation process. From the experimentally observed enhancements, we concluded 3.1-and 1.7-enhancements for absorption and F?rster energy transfer, respectively. This study clearly shows the plasmon enhancement mechanism and its excitation power dependence. It provides the basis for comparison of the enhancements of various plasmonic UCNP systems in the literature. It also lays the foundation for rational design of optical plasmonic structures for upconversion enhancement.
机译:稀土活化的上转换材料因其在生物成像和太阳能转换中的潜在应用而备受关注。为了提高上转换效率,已经使用了表面等离子体激元,但是所报道的增强变化很大,并且尚不清楚确切的增强机制。在这项研究中,我们合成了两亲性聚合物包覆的上转换纳米粒子(UCNPs),这使UCNPs水溶性且带负电。然后,我们设计并制造了一种银纳米光栅,通过聚电解质介导的逐层沉积技术在其上沉积了三个单层UCNP。最终结构在UCNP的吸收波长处表现出表面等离子体共振。纳米光栅上的UCNPs的绿色和红色光致发光强度分别比沉积在平坦银膜上的参考样品高16倍和39倍。对速率方程的透彻分析表明,这种增强完全是由于强激发态下的吸收增强,而吸收和Fsterster能量传递的增强都对弱激发态有贡献。由于快速的非辐射衰变主导了弛豫过程,因此发现赛尔系数很小且不重要。从实验观察到的增强,我们分别得出了3.1和1.7的吸收和Fsterster能量传递增强。这项研究清楚地表明了等离子体激元增强机制及其激发功率依赖性。它为比较文献中各种等离激元UCNP系统的增强功能提供了基础。这也为合理设计用于上转换的光学等离激元结构奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号