...
首页> 外文期刊>ACS nano >Electrochemical charging of CdSe quantum dot films: Dependence on void size and counterion proximity
【24h】

Electrochemical charging of CdSe quantum dot films: Dependence on void size and counterion proximity

机译:CdSe量子点薄膜的电化学充电:取决于空隙尺寸和抗衡离子的接近度

获取原文
获取原文并翻译 | 示例
           

摘要

Films of colloidal quantum dots (QDs) show great promise for application in optoelectronic devices. Great advances have been made in recent years in designing efficient QD solar cells and LEDs. A very important aspect in the design of devices based on QD films is the knowledge of their absolute energy levels. Unfortunately, reported energy levels vary markedly depending on the employed measurement technique and the environment of the sample. In this report, we determine absolute energy levels of QD films by electrochemical charge injection. The concomitant change in optical absorption of the film allows quantification of the number of charges in quantum-confined levels and thereby their energetic position. We show here that the size of voids in the QD films (i.e., the space between the quantum dots) determines the amount of charges that may be injected into the films. This effect is attributed to size exclusion of countercharges from the electrolyte solution. Further, the energy of the QD levels depends on subtle changes in the QD film and the supporting electrolyte: the size of the cation and the QD ligand length. These nontrivial effects can be explained by the proximity of the cation to the QD surface and a concomitant lowering of the electrochemical potential. Our findings help explain the wide range of reported values for QD energy levels and redefine the limit of applicability of electrochemical measurements on QD films. Finally, the finding that the energy of QD levels depends on ligand length and counterion size may be exploited in optimized designs of QD sensitized solar cells.
机译:胶体量子点(QDs)膜在光电器件中显示出广阔的前景。近年来,在设计高效的QD太阳能电池和LED方面取得了巨大的进步。在基于QD薄膜的设备设计中,一个非常重要的方面是了解其绝对能级。不幸的是,所报告的能量水平取决于所采用的测量技术和样品环境而显着不同。在本报告中,我们通过电化学电荷注入确定QD薄膜的绝对能级。膜的光吸收的伴随变化允许量化量子限制能级中的电荷数量,从而量化其能量位置。我们在这里表明,QD薄膜中空隙的大小(即量子点之间的空间)决定了可以注入薄膜中的电荷量。该效果归因于电解液中的反电荷的尺寸排阻。此外,QD水平的能量取决于QD膜和支持电解质的细微变化:阳离子的大小和QD配体的长度。这些非同小可的影响可以通过阳离子与QD表面的接近以及随之而来的电化学电位的降低来解释。我们的发现有助于解释所报告的QD能级值的范围,并重新定义QD膜上电化学测量的适用范围。最后,可以在优化的QD敏化太阳能电池设计中利用QD能量取决于配体长度和抗衡离子大小的发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号