...
首页> 外文期刊>ACS nano >Delaminated graphene at silicon carbide facets: Atomic scale imaging and spectroscopy
【24h】

Delaminated graphene at silicon carbide facets: Atomic scale imaging and spectroscopy

机译:碳化硅刻面上的分层石墨烯:原子尺度成像和光谱学

获取原文
获取原文并翻译 | 示例
           

摘要

Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (~10~(13) cm ~(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112ì...n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp~2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.
机译:原子分辨率的结构和光谱表征技术(扫描透射电子显微镜和电子能量损失光谱)与纳米级电学测量(导电原子力显微镜)相结合,通过控制六边形的石墨化在原子尺度上研究外延生长的石墨烯的性质。 SiC(0001)基板通过高温退火处理。众所周知,这种生长技术会导致明显的石墨烯电子掺杂(〜10〜(13)cm〜(-2)),这被认为是源于牢固结合到基板上的界面碳缓冲层。扫描透射电子显微镜分析以低于碳的敲除阈值的能量进行,以确保电子束不会对膜造成损害,证明存在于平面SiC(0001)面上的缓冲层从它位于SiC表面台阶的(112ì... n)面上。另外,电子能量损失光谱学揭示分层的层具有与纯sp_2杂化的石墨烯相似的电子构型。这些观察结果可用来解释通过导电原子力显微镜在表面台阶周围测得的石墨烯薄层电阻的局部增加,我们认为这是由于衬底引起的掺杂明显降低以及台阶区域的共振散射机制所致。提出了第一性原理校准的理论模型来解释SiC刻面上的缓冲层的结构不稳定性以及由此产生的分层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号