...
首页> 外文期刊>ACS nano >Directed assembly of P3HT:PCBM blend films using a chemical template with sub-300 nm features
【24h】

Directed assembly of P3HT:PCBM blend films using a chemical template with sub-300 nm features

机译:使用具有300 nm以下特征的化学模板直接组装P3HT:PCBM混合膜

获取原文
获取原文并翻译 | 示例
           

摘要

Surface energy has been demonstrated as a means to direct interfacial-layer composition in polymer:fullerene blends utilized as active layers in organic photovoltaic devices. Combined with recent materials advances in the preparation of nanoscale chemical patterns, surface energy control of nanophase separation presents an opportunity to employ patterned surface energy templates to control the 3D blend morphology of polymer:fullerene blends. This report details the directed assembly of poly(3-hexylthiophene):phenyl-C_(61)-butyric acid methyl ester (P3HT:PCBM) blends atop linear grating patterns with domains of alternating high and low surface energy of 50 to 600 nm in width prepared by nanoscale oxidative lithography of alkyl-terminated self-assembled monolayers on SiO_2 and SiH surfaces. Tapping-, contact-, and current-sensing AFM studies demonstrated that chemical patterns were effective at directing the 3D morphology of P3HT:PCBM blends at dimensions of >200 nm. As the dimensionality of domains approached 100 nm, the chemical patterns were no longer able to direct phase segregation, evidence that a directed spinodal decomposition mechanism was responsible for the observed morphology. Surprisingly, the low surface energy component (P3HT) was found to be atop the high surface energy domains of the template, in conflict with current understanding of the role of surface energy directed assembly in polymer blends. These results suggest that the directed spinodal decomposition mechanism applies to conjugated polymer:fullerene blends, but that additional parameters unique to these types of systems will require refinement of the theory to adequately describe and predict the behavior of these scientifically and industrially interesting materials.
机译:已经证明表面能是指导界面层组成在有机光伏器件中用作活性层的聚合物:富勒烯共混物中的一种手段。结合纳米材料化学图案制备中的最新材料进展,纳米相分离的表面能控制提供了使用带图案的表面能模板控制聚合物:富勒烯共混物的3D共混物形态的机会。该报告详细介绍了聚(3-己基噻吩):苯基-C_(61)-丁酸甲酯(P3HT:PCBM)的定向组装,在线性光栅图案上混合了50至600 nm的高低表面能交替变化的区域。 SiO_2和SiH表面上的烷基末端自组装单分子层的纳米氧化光刻技术制备的纳米宽。轻触,接触和电流感应AFM研究表明,化学图案可有效引导尺寸大于200 nm的P3HT:PCBM共混物的3D形态。当域的维数接近100 nm时,化学模式不再能够指导相分离,这证明了定向旋节线分解机制是所观察到的形态的原因。出乎意料的是,发现低表面能组分(P3HT)位于模板的高表面能域之上,这与当前对表面能定向组装在聚合物共混物中的作用的理解相矛盾。这些结果表明定向旋节线分解机制适用于共轭聚合物:富勒烯共混物,但是这些类型的系统独有的其他参数将需要对理论进行完善,以充分描述和预测这些在科学和工业上有意义的材料的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号