...
首页> 外文期刊>Global change biology >Quantifying microbial growth and carbon use efficiency in dry soil environments via(18)O water vapor equilibration
【24h】

Quantifying microbial growth and carbon use efficiency in dry soil environments via(18)O water vapor equilibration

机译:通过(18)o水蒸气平衡,量化干旱环境中的微生物生长和碳利用效率

获取原文
获取原文并翻译 | 示例
           

摘要

Soil microbial physiology controls large fluxes of C to the atmosphere, thus, improving our ability to accurately quantify microbial physiology in soil is essential. However, current methods to determine microbial C metabolism require liquid water addition, which makes it practically impossible to measure microbial physiology in dry soil samples without stimulating microbial growth and respiration (namely, the "Birch effect"). We developed a new method based on in vivo(18)O-water vapor equilibration to minimize soil rewetting effects. This method allows the isotopic labeling of soil water without direct liquid water addition. This was compared to the main current method (direct(18)O-liquid water addition) in moist and air-dry soils. We determined the time kinetics and calculated the average(18)O enrichment of soil water over incubation time, which is necessary to calculate microbial growth from(18)O incorporation in genomic DNA. We tested isotopic equilibration patterns in three natural and six artificially constructed soils covering a wide range of soil texture and soil organic matter content. We then measured microbial growth, respiration and carbon use efficiency (CUE) in three natural soils (either air-dry or moist). The proposed(18)O-vapor equilibration method provided similar results as the current method of liquid(18)O-water addition when used for moist soils. However, when applied to air-dry soils the liquid(18)O-water addition method overestimated growth by up to 250%, respiration by up to 500%, and underestimated CUE by up to 40%. We finally describe the new insights into biogeochemical cycling of C that the new method can help uncover, and we consider a range of questions regarding microbial physiology and its response to global change that can now be addressed.
机译:土壤微生物生理学对大气进行大量的C助焊剂,从而提高我们准确量化土壤中微生物生理的能力至关重要。然而,测定微生物C代谢的目前的方法需要液体水,这使得实际上不可能测量干燥土样品中的微生物生理学而不刺激微生物生长和呼吸(即“桦木效应”)。我们开发了一种基于体内(18)o水蒸气平衡的新方法,以最大限度地减少土壤重新润湿效应。该方法允许在不直接液体水的情况下进行土壤水的同位素标记。将其与潮湿和风干土壤中的主电流方法(直接(18)液水加入)进行比较。我们确定了时间动力学,并计算了土壤水的富集在孵育时间上的平均(18)次,这是计算从基因组DNA中的(18)o掺入的微生物生长的必要条件。我们在三种天然和六个人工构建的土壤中测试了同位素平衡模式,覆盖着各种土壤质地和土壤有机物质含量。然后在三种天然土壤中测量微生物生长,呼吸和碳利用效率(提示)(风干或湿润)。所提出的(18)o型蒸汽平衡方法提供了与用于湿土的当前液体(18)o水口的方法相似。然而,当施加到空气干燥土壤时,液体(18)O-水加入方法将增长高达250%,高达500%,低于50%,低至40%。我们终于将新方法能够帮助揭示的C对生物地球化学循环的新见解,并考虑了关于微生物生理学的一系列问题及其对现在可以解决的全球变革的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号