...
首页> 外文期刊>Global change biology >Modelling the dynamic physical protection of soil organic carbon: Insights into carbon predictions and explanation of the priming effect
【24h】

Modelling the dynamic physical protection of soil organic carbon: Insights into carbon predictions and explanation of the priming effect

机译:建模土壤有机碳的动态物理保护:含有碳预测的见解及解释效应的解释

获取原文
获取原文并翻译 | 示例
           

摘要

The role and significance of physically protected soil organic carbon (SOC) in regulating SOC dynamics remains unclear. Here, we developed a simple theoretical model (DP model) considering dynamic physical protection to simulate the dynamics of protected (C-p) and unprotected SOC (C-u), and compared the modelling results with a conventional two-pool (fast vs. slow) model considering chemical recalcitrance. The two models were first constrained using extensive SOC data collected from soils with and without fresh carbon (C) inputs under incubation conditions, and then applied to project SOC dynamics and explore mechanisms underpinning the priming effect (PE). Overall, both models explained more than 99% of the variances in observed SOC dynamics. The DP model predicted that C-p accounted for the majority of total SOC. As decomposition proceeds, the proportion of C-p reached >90% and kept relatively constant. Although the similar performance of the two models in simulating observed total SOC dynamics, their predictions of future SOC dynamics were divergent, challenging the predictions of widely used pool-based models. The DP model also suggested alternative mechanisms underpinning the priming of SOC decomposition by fresh C inputs. The two-pool model suggested that the PE was caused by the stimulated decomposition rates, especially for the slow recalcitrant pool, while the DP model suggested that the PE might be the combined consequence of stimulated C-u decomposition, the liberation of C-p to decomposition and the inhibition of the protection of unprotected SOC. The model-data integration provided a new explanation for the PE, highlighting the importance of liberation of initially physically protected SOC to decomposition by new C inputs. Our model-data integration demonstrated the importance of simulating physical protection processes for reliable SOC predictions, and provided new insights into mechanistic understanding of the priming effect.
机译:物理保护的土壤有机碳(SOC)在调节SOC动力学中的作用和意义仍不清楚。在这里,考虑动态物理保护的简单理论模型(DP模型),以模拟受保护(CP)和未保护的SOC(CU)的动态,并将建模结果与传统的双池(FAST VS慢)进行比较考虑化学重新分析。这两种模型首先使用从孵化条件下的土壤中收集的广泛的SOC数据进行约束,然后应用于项目Soc动态,并探索支撑灌注效应的机制(PE)。总的来说,两种模型都在观察到的SoC动态中解释了超过99%的差异。 DP模型预测C-P占总SOC的大多数。作为分解进行,C-P的比例达到> 90%并保持相对恒定。虽然两种模型在模拟观察到的SOC动态方面的类似性能,但它们对未来SOC动态的预测是发散的,挑战了广泛使用的基于池模型的预测。 DP模型还建议通过新鲜C输入构成SoC分解的启动的替代机制。双泳池模型表明,PE是由刺激的分解率引起的,特别是对于缓慢的核批准池,而DP模型表明PE可能是刺激的Cu分解的综合后果,CP对分解的解放和分解的解放抑制保护无保护的SoC。模型 - 数据集成为PE提供了一个新的解释,突出显示最初物理保护的SOC的解放的重要性,通过新的C输入分解。我们的模型 - 数据集成证明了模拟可靠的SOC预测的物理保护过程的重要性,并为对灌注效果的机械理解提供了新的洞察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号