首页> 外文期刊>Global change biology >Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO(2)as inferred from least-cost optimality theory
【24h】

Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO(2)as inferred from least-cost optimality theory

机译:叶片光合作用的机制与升温和升高的CO(2)从最低成本的最优理论推断出来

获取原文
获取原文并翻译 | 示例
           

摘要

The mechanisms responsible for photosynthetic acclimation are not well understood, effectively limiting predictability under future conditions. Least-cost optimality theory can be used to predict the acclimation of photosynthetic capacity based on the assumption that plants maximize carbon uptake while minimizing the associated costs. Here, we use this theory as a null model in combination with multiple datasets of C(3)plant photosynthetic traits to elucidate the mechanisms underlying photosynthetic acclimation to elevated temperature and carbon dioxide (CO2). The model-data comparison showed that leaves decrease the ratio of the maximum rate of electron transport to the maximum rate of Rubisco carboxylation (J(max)/V-cmax) under higher temperatures. The comparison also indicated that resources used for Rubisco and electron transport are reduced under both elevated temperature and CO2. Finally, our analysis suggested that plants underinvest in electron transport relative to carboxylation under elevated CO2, limiting potential leaf-level photosynthesis under future CO(2)concentrations. Altogether, our results show that acclimation to temperature and CO(2)is primarily related to resource conservation at the leaf level. Under future, warmer, high CO(2)conditions, plants are therefore likely to use less nutrients for leaf-level photosynthesis, which may impact whole-plant to ecosystem functioning.
机译:负责光合作用适应的机制尚不清楚,有效地限制了未来条件下的可预测性。最低成本的最优理论可用于基于植物最大化碳吸收的假设来预测光合容量的适应性,同时最小化相关成本。这里,我们将该理论与C(3)植物光合作用的多个数据集结合使用,以阐明光合作用驯化与升高的温度和二氧化碳(CO2)的机制。模型数据比较显示,叶片在较高温度下降低电子传输的最大速率与Rubisco羧化(J(max)/ V-cmax)的最大速率。比较还表明,在升高的温度和二氧化碳下,降低了用于Rubisco和电子传输的资源。最后,我们的分析表明,在升高的CO2下,在电子输送中植物在电子传输中的植物,在未来的CO(2)浓度下限制了潜在的叶级光合作用。完全,我们的结果表明,适应温度和CO(2)的适应主要与叶子水平的资源保护有关。在未来,温暖,高CO(2)条件下,植物可能会使用较少的叶级光合作用营养素,这可能会影响整个植物到生态系统功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号