...
首页> 外文期刊>International Journal of Plasticity >Integrated crystal plasticity and phase field model for prediction of recrystallization texture and anisotropic mechanical properties of cold-rolled ultra-low carbon steels
【24h】

Integrated crystal plasticity and phase field model for prediction of recrystallization texture and anisotropic mechanical properties of cold-rolled ultra-low carbon steels

机译:用于预结晶纹理预测的集成晶体塑性和相场模型及冷轧超低碳钢的各向异性力学性能

获取原文
获取原文并翻译 | 示例
           

摘要

A multi-scale approach integrating a polycrystal plasticity finite element (CPFEM) and a multiphase field model (PFM) is developed in this study and employed to the prediction of anisotropic mechanical properties of annealed ultra-low carbon steel. The CPFEM simulates inhomogeneous local deformation and orientation distribution of ultra-low carbon steel, while the PFM predicts microstructure evolution originating from nucleation and growth. The present study highlights a systematic modeling process including reduction of the stored energy by the recovery process, nucleation of grains with preferred orientation based on generalized strain energy release maximization theory (GSERM), and grain growth with consideration of the stored energy difference and misorientation between neighboring grains, which are provided from local effects in the CPFEM. The two computational approaches are numerically mapped by the Wigner-Seitz cell method to efficiently transfer state variables between the domains of finite element and finite difference schemes for CPFEM and PFM, respectively. The proposed multiscale model is quantitatively validated through experimentally measured microstructural characteristics of annealed ultra-low carbon steel after the rolling deformation, i.e., its recrystallization texture in the aspect of pole figures and ODF, grain size, and distributions. Finally, the predicted microstructural information after the thermo-mechanical process is used as input for virtual mechanical tests simulating orientation-dependent tensile properties. The comparison of predicted orientation-dependent yield stresses and Lankford coefficients as measures for anisotropic mechanical properties with those of experiments confirm the validity and accuracy of the proposed CPFEM-PFM approach as an efficient tool for understanding the relationship between the thermo-mechanical process, microstructure, and mechanical properties in the material design stage.
机译:本研究开发了一种整合多晶塑性有限元(CPFEM)和多相现场模型(PFM)的多尺度方法,并采用预测退火的超低碳钢的各向异性机械性能。 CPFEM模拟超低碳钢的不均匀局部变形和取向分布,而PFM预测源自成核和生长的微观结构演变。本研究强调了系统建模过程,包括通过恢复过程减少储存能量,基于广义应变能量释放最大化理论(GSERM)的优选取向成颗粒,并考虑到储存能量差和杂志之间的谷物生长邻近的谷物,这些谷物是在CPFEM中的局部效果提供的。通过Wigner-Seitz细胞方法对两种计算方法进行数值映射,以便分别有效地在有限元和CPFEM和PFM的有限元和PFM之间的有限差分方案之间传递状态变量。通过在滚动变形之后通过试验测量的超低碳钢的微观结构特性定量验证所提出的多尺度模型,即磁极图和ODF,晶粒尺寸和分布方面的重结晶纹理。最后,使用热机械过程之后的预测微观结构信息用作模拟取向依赖性拉伸性能的虚拟机械测试的输入。预测取向依赖性屈服应力和Lankford系数作为各向异性机械性能的测量与实验的措施证实了所提出的CPFEM-PFM方法的有效性和准确性,作为理解热机械过程,微观结构之间关系的有效工具和材料设计阶段中的机械性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号