【24h】

Electromagnetic flanging: from elementary geometries to aeronautical components

机译:电磁法兰:从基础几何到航空成分

获取原文
获取原文并翻译 | 示例
           

摘要

Aeronautical companies are manufacturing many components of small (less than 200 mm) and medium (between 200 mm and 1000 mm) sizes by flexforming. In order to diversify the production facilities of these components, these companies are interested in evaluating the ability of electromagnetic forming processes to produce small parts. This paper describes the design of a set of experiments of electromagnetic flanging with some elementary geometries, whose purpose is to enlighten several geometrical defect issues encountered, and to propose some solutions. A particular attention is first paid to the straight flange, which allows to analyse, understand and then correct the main defect issues that can occur during the forming. The proposed solutions consist of some particular design of the inductors and the dies, in order to adjust the profile of the loading and the kinematics of bending of the flange to obtain the desired final geometry. Next, curved flanges are addressed, and finally the forming of a model aeronautical part combining several elementary geometries of flange is described. Promising results are obtained. In these experiments, sheets of 1, 2 and 1.6 mm thickness made of aluminium alloy 2024-T4 and sheets of 0.5 mm thickness made of aluminium alloy 1050 are used. The geometric dispersions and the material soundness of the parts have been controlled. Besides, a numerical model of the model aeronautical part has been developed in the LS-DYNA computing environment, whose final purpose is to facilitate the design of the coil. The results of the numerical simulations are shown to be qualitatively in accordance with experimental results.
机译:航空公司正在制造许多小(小于200毫米)和中等(介质)的组件,通过Flexforming尺寸为尺寸。为了使这些组件的生产设施多样化,这些公司有兴趣评估电磁成型过程生产小零件的能力。本文介绍了一组电磁法兰与一些基本几何形状的实验的设计,其目的是启发遇到的几个几何缺陷问题,并提出一些解决方案。特别注意首先向直法兰付费,这允许分析,理解,然后纠正在成型期间可能发生的主要缺陷问题。所提出的解决方案包括电感器和模具的一些特殊设计,以调整装载的轮廓和弯曲的弯曲的运动学,以获得所需的最终几何形状。接下来,描述了弯曲的凸缘,最后描述了组合诸如凸缘的若干基本几何形状的模型航空部件的形成。获得有希望的结果。在这些实验中,使用由铝合金2024-T4制成的1,2和1.6mm的厚度和由铝合金1050制成的0.5mm厚的片材。已经控制了几何分散体和部件的材料声音。此外,在LS-DYNA计算环境中开发了模型航空部件的数值模型,其最终目的是促进线圈的设计。数值模拟的结果显示根据实验结果是定性的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号