...
首页> 外文期刊>Contributions to Mineralogy and Petrology >The Fe-C-O-H-N system at 6.3-7.8 GPa and 1200-1400 degrees C: implications for deep carbon and nitrogen cycles
【24h】

The Fe-C-O-H-N system at 6.3-7.8 GPa and 1200-1400 degrees C: implications for deep carbon and nitrogen cycles

机译:Fe-C-O-H-N系统在6.3-7.8 GPA和1200-1400摄氏度:对深碳和氮循环的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Interactions in a Fe-C-O-H-N system that controls the mobility of siderophile nitrogen and carbon in the Fe-0-saturated upper mantle are investigated in experiments at 6.3-7.8 GPa and 1200-1400 A degrees C. The results show that the gamma-Fe and metal melt phases equilibrated with the fluid in a system unsaturated with carbon and nitrogen are stable at 1300 A degrees C. The interactions of Fe3C with an N-rich fluid in a graphite-saturated system produce the epsilon-Fe3N phase (space group P6(3)/mmc or P6(3)22) at subsolidus conditions of 1200-1300 A degrees C, while N-rich melts form at 1400 A degrees C. At IW- and MMO-buffered hydrogen fugacity (fH(2)), fluids vary from NH3- to H2O-rich compositions (NH3/N-2 1 in all cases) with relatively high contents of alkanes. The fluid derived from N-poor samples contains less H2O and more carbon which mainly reside in oxygenated hydrocarbons, i.e., alcohols and esters at MMO-buffered fH(2) and carboxylic acids at unbuffered fH(2) conditions. In unbuffered conditions, N-2 is the principal nitrogen host (NH3/N-2 aecurrency 0.1) in the fluid equilibrated with the metal phase. Relatively C- and N-rich fluids in equilibrium with the metal phase (gamma-Fe, melt, or Fe3N) are stable at the upper mantle pressures and temperatures. According to our estimates, the metal/fluid partition coefficient of nitrogen is higher than that of carbon. Thus, nitrogen has a greater affinity for iron than carbon. The general inference is that reduced fluids can successfully transport volatiles from the metal-saturated mantle to metal-free shallow mantle domains. However, nitrogen has a higher affinity for iron and selectively accumulates in the metal phase, while highly mobile carbon resides in the fluid phase. This may be a controlling mechanism of the deep carbon and nitrogen cycles.
机译:在6.3-7.8GPa和1200-1400℃的实验中研究了在Fe-0饱和上部幔中控制过饱和氮和碳的迁移率的Fe-Cohn系统中的相互作用。结果表明伽玛-FE用碳和氮气在系统不饱和的系统中平衡的金属熔体相在1300℃下稳定。Fe3C与富含N的石墨饱和体系中的富氢的相互作用产生EPSILON-FE3N相(空间组P6 (3)/ mmc或p6(3)22)在1200-1300℃的子葡萄球菌条件下,而N-富含N-富含的熔体形式,在IW-和MMO缓冲的氢脱硫(FH(2))下,流体随NH 3至H 2 O至H 2 O的组合物(所有情况下NH3 / N-2> 1),具有相对高的烷烃含量。衍生自N差样品的流体含有较少的H2O和更多碳,主要位于含氧烃,即在MMO缓冲的FH(2)的醇和酯,在无缓冲的FH(2)条件下。在无缓冲的条件下,N-2是在与金属相平衡的流体平衡的流体中的主要氮宿主(NH3 / N-2 AE& ofcency& 0.1)。在具有金属相(γ-Fe,熔体或Fe3N)的平衡中相对C-和N-富含的液体在上部罩压力和温度下稳定。根据我们的估计,氮的金属/流体分配系数高于碳。因此,氮对熨斗具有更大的亲和力而不是碳。总是推断的是,减少的流体可以成功地将挥发物从金属饱和的地幔到无金属浅地幔结构域。然而,氮对铁具有更高的亲和力,并选择性地积聚在金属相中,而高度移动碳在流体相中。这可以是深碳和氮循环的控制机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号