...
首页> 外文期刊>Acta biomaterialia >The realistic prediction of oxygen transport in a tissue-engineered scaffold by introducing time-varying effective diffusion coefficients.
【24h】

The realistic prediction of oxygen transport in a tissue-engineered scaffold by introducing time-varying effective diffusion coefficients.

机译:通过引入随时间变化的有效扩散系数,可对组织工程支架中的氧气运输进行实际预测。

获取原文
获取原文并翻译 | 示例
           

摘要

An adequate oxygen supply is one of the most important factors needed in order to regenerate or engineer thick tissues or complex organs. To devise a method for maximizing the amount of oxygen available to cells, it is necessary to understand and to realistically predict oxygen transport within an engineered tissue. In this study, we focused on the fact that oxygen transport through a tissue-engineered scaffold may vary with time as cells proliferate. To confirm this viewpoint, effective oxygen diffusion coefficients (D(e)(,)(s)) of scaffolds were deduced from experimental measurements and simulations of oxygen-concentration profiles were performed using these D(e)(,)(s) values in a two-dimensional (2-D) perfusion model. The results of this study indicate that higher porosity, hydraulic permeability and interconnectivity of scaffolds with no cells are responsible for the prominent diffusion capability quantified using D(e)(,)(s). On the other hand, the D(e)(,)(s) of scaffolds with cells has a negative linear relationship with cell density. Cell proliferation with time leads to a significant decrease in oxygen concentration in the 2-D perfusion model. This result demonstrates the gradual restriction of oxygen transport in a porous scaffold during cell culture. Therefore, the realistic prediction of oxygen transport using a time-varying D(e)(,)(s) will provide an appropriate basis for designing optimal transport networks within a thick scaffold.
机译:充足的氧气供应是再生或工程化厚组织或复杂器官所需的最重要因素之一。为了设计一种使细胞可用的氧气量最大化的方法,有必要了解并现实地预测工程组织内的氧气传输。在这项研究中,我们集中于以下事实:随着细胞的增殖,氧气通过组织工程支架的转运可能会随时间而变化。为了证实这一观点,从实验测量值推导出支架的有效氧扩散系数(D(e)(,)(s)),并使用这些D(e)(,)(s)值进行氧浓度曲线的模拟在二维(2-D)灌注模型中。这项研究的结果表明,没有孔的脚手架的较高的孔隙度,水力渗透性和互连性是使用D(e)(,)(s)量化的突出扩散能力的原因。另一方面,具有细胞的支架的D(e)(,)(s)与细胞密度具有负线性关系。随着时间的推移,细胞增殖会导致二维灌注模型中的氧气浓度显着降低。该结果证明了在细胞培养过程中多孔支架中氧气运输的逐渐限制。因此,使用随时间变化的D(e)(,)(s)进行氧气输送的现实预测将为设计厚支架内的最佳输送网络提供适当的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号