...
首页> 外文期刊>Desalination: The International Journal on the Science and Technology of Desalting and Water Purification >Thermodynamic optimization of Multistage Pressure Retarded Osmosis (MPRO) with variable feed pressures for hypersaline solutions
【24h】

Thermodynamic optimization of Multistage Pressure Retarded Osmosis (MPRO) with variable feed pressures for hypersaline solutions

机译:多级压力延迟渗透(MPRO)的热力学优化,具有氧化溶液的可变饲料压力

获取原文
获取原文并翻译 | 示例
           

摘要

Salinity gradient processes, such as Forward Osmosis and Pressure Retarded Osmosis, have been proven to be promising technologies for reducing the energy consumption in water treatment processes, for energy production, and for energy recovery. Based on the thermodynamic concepts, specifically Gibbs' Free Energy of Mixing, the concentration of the draw solution plays an important role in determining whether the selected salinity gradient process is economically feasible or not. An increase in the salinity of a draw solution does not only increase the osmotic pressure difference between the draw and feed solutions, but also allows a higher hydraulic pressure to be applied on the draw solution, which together greatly increases the volumetric flux of the draw solution per single pass when PRO is used. Even though higher power densities can be achieved by applying higher hydraulic pressures on the draw solution, this requires greater mechanical stability of the membrane to be able to withstand these higher hydraulic pressures. In order to increase the mechanical stability of the membranes, generally, thicker support layers can be applied, which have a direct negative impact on membrane permeability. Therefore, there is a limitation to the salinity of the draw solution which can be used in the PRO processes. This being dependent on the concentration of the hypersaline solution and hence overall hydraulic pressure, necessitating the use of an ultra-thick support layer for maximum energy production and/or recovery. In this theoretical and simulative optimization of the PRO process, we achieved the optimum energy recovery from a hypersaline solution (TDS similar to 300,000 mg/l) by using a multistage PRO (MPRO) system which included implementing variable applied feed pressures to each stage. The results showed that the volumetric flow rate of the hypersaline draw solution increased by up to a factor of 10 during the MPRO process in single pass, and the concentration of the hypersaline draw solution diluted up to 10 x accordingly. Energy conversion efficiency of osmotic pressure to hydraulic pressure was found to be around 10% without variable feed pressure and approximately 20% with variable feed pressure.
机译:已经证明,盐度梯度过程,例如前渗透和压力渗透性渗透,是有前途的技术,用于降低水处理过程中的能耗,用于能源生产和能源回收。基于热力学概念,特别是Gibbs的混合能量,绘制溶液的浓度在确定所选盐度梯度过程是否在经济上可行的情况下起着重要作用。绘制溶液的盐度的增加不仅增加了拉伸和进料溶液之间的渗透压差,而且还允许在绘制溶液上施加更高的液压,这在一起大大增加了拉伸溶液的体积通量当使用Pro时,每次单次通过。尽管通过在拉伸溶液上应用更高的液压压力可以实现更高的功率密度,但这需要更大的膜的机械稳定性能够承受这些更高的液压压力。为了增加膜的机械稳定性,通常可以施加较厚的支撑层,其对膜渗透性具有直接的负面影响。因此,可以在Pro过程中使用的绘制溶液的盐度限制。这取决于浓度溶液的浓度,从而依赖于整体液压,所以需要使用超厚的支撑层以进行最大能量产生和/或恢复。在Pro工艺的理论和模拟优化中,我们通过使用多级Pro(MPRO)系统来实现从纯净的溶液(TDS类似于300,000mg / L)的最佳能量回收,该系统包括在每个阶段实现可变施加的进料压力。结果表明,在单次通过的MPRO过程中,纯净的溶液的体积流量增加到10倍,并且相应地稀释了高达10×的浓度稀释的浓度。发现渗透压与液压的能量转换效率约为10%,没有可变进料压力,具有可变进料压力约20%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号