...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Size dependent behavior of Fe3O4 crystals during electrochemical (de)lithiation: an in situ X-ray diffraction, ex situ X-ray absorption spectroscopy, transmission electron microscopy and theoretical investigation
【24h】

Size dependent behavior of Fe3O4 crystals during electrochemical (de)lithiation: an in situ X-ray diffraction, ex situ X-ray absorption spectroscopy, transmission electron microscopy and theoretical investigation

机译:电化学(DE)锂化期间Fe3O4晶体的尺寸依赖性行为:原位X射线衍射,Ex原位X射线吸收光谱,透射电子显微镜和理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

The iron oxide magnetite, Fe3O4, is a promising conversion type lithium ion battery anode material due to its high natural abundance, low cost and high theoretical capacity. While the close packing of ions in the inverse spinel structure of Fe3O4 enables high energy density, it also limits the kinetics of lithium ion diffusion in the material. Nanosizing of Fe3O4 to reduce the diffusion path length is an effective strategy for overcoming this issue and results in improved rate capability. However, the impact of nanosizing on the multiple structural transformations that occur during the electrochemical (de) lithiation reaction in Fe3O4 is poorly understood. In this study, the influence of crystallite size on the lithiation-conversion mechanisms in Fe3O4 is investigated using complementary X-ray techniques along with transmission electron microscopy (TEM) and continuum level simulations on electrodes of two different Fe3O4 crystallite sizes. In situ X-ray diffraction (XRD) measurements were utilized to track the changes to the crystalline phases during (de) lithiation. X-ray absorption spectroscopy (XAS) measurements at multiple points during the (de) lithiation processes provided local electronic and atomic structural information. Tracking the crystalline and nanocrystalline phases during the first (de) lithiation provides experimental evidence that (1) the lithiation mechanism is non-uniform and dependent on crystallite size, where increased Li+ diffusion length in larger crystals results in conversion to FeO metal while insertion of Li+ into spinel-Fe3O4 is still occurring, and (2) the disorder and size of the Fe metal domains formed when either material is fully lithiated impacts the homogeneity of the FeO phase formed during the subsequent delithiation.
机译:氧化铁磁铁矿,四氧化三铁,是一种有前途的转换型锂离子电池的阳极材料由于其高的天然丰度,低成本和高理论容量。而离子在四氧化三铁的反尖晶石结构紧密堆积可实现高能量密度,同时也限制了锂离子的扩散的动力学在材料中。四氧化三铁的Nanosizing减少扩散路径长度为克服这一问题,并导致利率提高能力的有效策略。然而,nanosizing对电化学(DE)在锂化反应的Fe3O4期间发生的多个结构变换的影响知之甚少。在这项研究中,微晶尺寸对锂化转换机制中的Fe3O4的影响是使用沿两个不同的四氧化三铁的微晶尺寸的电极用透射电子显微镜(TEM)和连续级仿真互补透视技术研究。原位X射线衍射(XRD)测量,用于跟踪期间(日)锂化的变化到结晶相。期间(日)的锂化过程的多个点处的X射线吸收光谱(XAS)测量提供本地电子和原子结构信息。第一(反)锂化过程中跟踪所述结晶和纳米晶相提供的实验证据表明:(1)锂化机制是不均匀的并且依赖于微晶尺寸,其中更大的晶体导致转化率增加Li +的扩散长度为FeO金属而插入的Li +为尖晶石的Fe3O4仍然发生,并且当任一材料被完全锂化的影响随后的脱锂过程中形成的FeO的相的均匀性中的Fe的金属的病症和大小域(2)形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号