...
首页> 外文期刊>Nature reviews Cancer >Using CESM-RESFire to understand climate-fire-ecosystem interactions and the implications for decadal climate variability
【24h】

Using CESM-RESFire to understand climate-fire-ecosystem interactions and the implications for decadal climate variability

机译:使用CESM-Resfire来了解气候 - 火灾生态系统的相互作用以及对截止解决气候变异性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Large wildfires exert strong disturbance on regional and global climate systems and ecosystems by perturbing radiative forcing as well as the carbon and water balance between the atmosphere and land surface, while shortand long-term variations in fire weather, terrestrial ecosystems, and human activity modulate fire intensity and reshape fire regimes. The complex climate-fire-ecosystem interactions were not fully integrated in previous climate model studies, and the resulting effects on the projections of future climate change are not well understood. Here we use the fully interactive REgion-Specific ecosystem feedback Fire model (RESFire) that was developed in the Community Earth System Model (CESM) to investigate these interactions and their impacts on climate systems and fire activity. We designed two sets of decadal simulations using CESM-RESFire for present-day (2001-2010) and future (2051-2060) scenarios, respectively, and conducted a series of sensitivity experiments to assess the effects of individual feedback pathways among climate, fire, and ecosystems. Our implementation of RESFire, which includes online land-atmosphere coupling of fire emissions and fire-induced land cover change (LCC), reproduces the observed aerosol optical depth (AOD) from space-based Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products and ground-based AErosol RObotic NETwork (AERONET) data; it agrees well with carbon budget benchmarks from previous studies. We estimate the global averaged net radiative effect of both fire aerosols and fire-induced LCC at - 0.59 +/- 0.52 W m(-2), which is dominated by fire aerosol- cloud interactions (-0.82 +/- 0.19 W m(-2)), in the presentday scenario under climatological conditions of the 2000s. The fire-related net cooling effect increases by similar to 170 % to -1.60 +/- 0.27 W m(-2) in the 2050s under the conditions of the Representative Concentration Pathway 4.5 (RCP4.5) scenario. Such considerably enhanced radiative effect is attributed to the largely increased global burned area (+19 %) and fire carbon emissions (+100 %) from the 2000s to the 2050s driven by climate change. The net ecosystem exchange (NEE) of carbon between the land and atmosphere components in the simulations increases by 33 % accordingly, implying that biomass burning is an increasing carbon source at short-term timescales in the future. High-latitude regions with prevalent peatlands would be more vulnerable to increased fire threats due to climate change, and the increase in fire aerosols could counter the projected decrease in anthropogenic aerosols due to air pollution control policies in many regions. We also evaluate two distinct feedback mechanisms that are associated with fire aerosols and fire-induced LCC, respectively. On a global scale, the first mechanism imposes positive feedbacks to fire activity through enhanced droughts with suppressed precipitation by fire aerosol-cloud interactions, while the second one manifests as negative feedbacks due to reduced fuel loads by fire consumption and postfire tree mortality and recovery processes. These two feed-back pathways with opposite effects compete at regional to global scales and increase the complexity of climate-fire-ecosystem interactions and their climatic impacts.
机译:大野火扰动辐射强迫以及大气和地表之间的碳和水平衡发挥对区域和全球气候系统和生态系统的强干扰,而在火险气象,陆地生态系统和人类活动的调制火shortand长期变化强度和重塑上火。复杂的气候火生态系统的相互作用并没有完全整合在以前的气候模型的研究,并在未来气候变化的预测所产生的影响还不是很清楚。这里我们使用了完全互动的区域特定的生态系统反馈火灾模型是在社区地球系统模式(CESM)开发(RESFire)调查这些相互作用及其影响,对气候系统和消防活动。我们分别使用CESM-RESFire为现今(2001- 2010年)和未来(二○五一年至2060年)的情况,设计了两套十年模拟,并进行了一系列的敏感性试验,以评估气候之间的个体反馈通路的影响,火,和生态系统。我们的实现RESFire的,其包括在线陆气火排放和火灾引起的土地覆盖变化(LCC)的耦合,再现从基于空间的中分辨率成像光谱仪(MODIS)卫星的产品和地面观察到的气溶胶光学厚度(AOD)为基础的气溶胶机器人网络(AERONET)数据;它与以前的研究碳预算基准吻合。我们估计全球平均都火气溶胶和火灾引起的LCC的净处辐射效应 - 0.59 +/- 0.52脉冲W M(-2),这是由火灾气溶胶云相互作用(-0.82 +/- 0.19脉冲W M(占主导地位-2)),在2000年代的气候条件下,今时今日场景。代表浓度通路4.5(RCP4.5)情景的条件下,与火有关的净冷却效果增加通过类似于170%至21世纪50年代-1.60 +/- 0.27脉冲W M(-2)。这样显着地提高辐射效应归因于大大增加全球过火面积(19%),并从2000年代到气候变化驱动的21世纪50年代火碳排放(100%)。碳的陆地和大气组件之间通过相应地33%的模拟增加净生态系统交换(NEE),这意味着生物质燃烧是在将来的短期时间尺度越来越碳源。与流行的泥炭地高纬度地区会更容易增加,由于气候变化威胁火灾和火灾气溶胶的增加也能抗衡了人为气溶胶预计减少,因为在许多地区空气污染控制政策。我们也评估与分别消防气溶胶和火灾引起的LCC,相关的两个不同的反馈机制。在全球范围内,第一机构通过与由火气溶胶云相互作用抑制沉淀增强的干旱施加正反馈到火灾的活性,而第二个表现为负反馈由于火灾消耗和火灾后树死亡率和恢复过程减少燃料负荷。这些具有相反的效应之两种反馈途径在区域竞争中全球规模,增加气候火生态系统的相互作用及其气候影响的复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号