...
首页> 外文期刊>Nanotechnology >Coexistence of Van Hove singularities and pseudomagnetic fields in modulated graphene bilayer
【24h】

Coexistence of Van Hove singularities and pseudomagnetic fields in modulated graphene bilayer

机译:Van Hove奇点和伪磁场在调制石墨烯双层的共存

获取原文
获取原文并翻译 | 示例
           

摘要

The stacking and bending of graphene are trivial but extremely powerful agents of control over graphene's manifold physics. By changing the twist angle, one can drive the system over a plethora of exotic states via strong electron correlation, thanks to the moire superlattice potentials, while the periodic or triaxial strains induce discretization of the band structure into Landau levels without the need for an external magnetic field. We fabricated a hybrid system comprising both the stacking and bending tuning knobs. We have grown the graphene monolayers by chemical vapor deposition, using C-12 and C-13 precursors, which enabled us to individually address the layers through Raman spectroscopy mapping. We achieved the long-range spatial modulation by sculpturing the top layer (C-13) over uniform magnetic nanoparticles (NPs) deposited on the bottom layer (C-12). An atomic force microscopy study revealed that the top layer tends to relax into pyramidal corrugations with C-3 axial symmetry at the position of the NPs, which have been widely reported as a source of large pseudomagnetic fields (PMFs) in graphene monolayers. The modulated graphene bilayer (MGBL) also contains a few micrometer large domains, with the twist angle similar to 10 degrees, which were identified via extreme enhancement of the Raman intensity of the G-mode due to formation of van Hove singularities (VHSs). We thereby conclude that the twist-induced VHSs coexist with the PMFs generated in the strained pyramidal objects without mutual disturbance. The graphene bilayer modulated with magnetic NPs is a non-trivial hybrid system that accommodates features of twist-induced VHSs and PMFs in environs of giant classical spins.
机译:石墨烯的堆叠和弯曲是对石墨烯歧管物理学的控制的微不足道的。通过改变扭转角度,由于莫尔超晶格潜力,可以通过强电子相关性驱动系统通过强烈的电子相关性,而周期性或三轴菌株诱导带状结构的离散化,而不需要外部磁场。我们制造了一种混合系统,包括堆叠和​​弯曲调谐旋钮。我们已经通过化学气相沉积,使用C-12和C-13前体来增强石墨烯单​​层,使我们能够通过拉曼光谱映射来单独地解决层。我们通过在沉积在底层(C-12)上的均匀磁性纳米颗粒(NP)上雕刻顶层(C-13)来实现远程空间调制。原子力显微镜研究表明,顶层倾向于在NPS的位置处与C-3轴对称的锥体波纹放松,这已被广泛报道为石墨烯单层中的大型伪磁场(PMF)的源极。调制的石墨烯双层(MGBL)还含有几微米的大结构域,其扭曲角度类似于10度,通过极端增强G模式的拉曼强度的极端增强,由于van Hove奇异性(VHSS)的形成。因此,我们得出结论,扭曲引起的VHSS与应变金字塔物体中产生的PMF共存而不相互扰乱。用磁性NPS调制的石墨烯双层是一种非捷径混合系统,可容纳扭曲诱导的VHSS和PMF在巨型古典旋转的环境中的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号