...
首页> 外文期刊>Nanotechnology >Engulfment control of platinum nanoparticles into oxidized silicon substrates for fabrication of dense solid-state nanopore arrays
【24h】

Engulfment control of platinum nanoparticles into oxidized silicon substrates for fabrication of dense solid-state nanopore arrays

机译:铂纳米粒子将镀铂纳米粒子置入抗熔固态纳米孔阵列的氧化硅基衬里

获取原文
获取原文并翻译 | 示例
           

摘要

We found that platinum (Pt) nanoparticles, upon annealing at high temperature of 1000 degrees C, are engulfed into amorphous fused-silica or thermal oxide silicon substrates. The same phenomenon was previously published for gold (Au) nanoparticles. Similar to the Au nanoparticles, the engulfed Pt nanoparticles connect to the surface of the substrates through conical nanopores, and the size of the Pt nanoparticles decreases with increasing depth of the nanopores. We explain the phenomena as driven by the formation of platinum oxide by reaction of the platinum with atmospheric oxygen, with platinum oxide evaporating to the environment. We found that the use of Pt provides much better controllability than the use of Au. Due to the high vapor pressure of platinum oxide, the engulfment of the Pt nanoparticles into oxidized silicon (SiO2) substrates is faster than of Au nanoparticles. At high temperature annealing we also find that the aggregation of Pt nanoparticles on the substrate surface is insignificant. As a result, the Pt nanoparticles are uniformly engulfed into the substrates, leading to an opportunity for patterning dense nanopore arrays. Moreover, the use of oxidized Si substrates enables us to precisely control the depth of the nanopores since the engulfment of Pt nanoparticles stops at a short distance above the SiOx/Si interface. After subsequent etching steps, a membrane with dense nanopore through-holes with diameters down to sub-30 nm is obtained. With its simple operation and high controllability, this fabrication method provides an alternative for rapid patterning of dense arrays of solid-state nanopores at low-cost.
机译:我们发现铂(Pt)纳米颗粒在1000℃的高温下退火时被串联成无定形熔融二氧化硅或热氧化物硅基衬底。以前发表了相同的现象,用于金(Au)纳米颗粒。与Au纳米颗粒类似,伯纳纳米粒子通过锥形纳米孔连接到基板的表面,并且Pt纳米粒子的尺寸随着纳米孔的深度而降低。我们通过铂与大气氧的反应来解释由铂形成铂氧化铂驱动的现象,用铂氧化于环境。我们发现,PT的使用提供了比AU的使用更好的可控性。由于铂氧化物的高蒸气压,Pt纳米颗粒将Pt纳米颗粒置入氧化硅(SiO 2)底物中比Au纳米颗粒更快。在高温退火时,我们还发现Pt纳米颗粒在基材表面上的聚集是微不足道的。结果,PT纳米颗粒均匀地倾斜到基板中,导致用于图案化致密纳米孔阵列的机会。此外,使用氧化的Si底物使我们能够精确地控制纳米孔的深度,因为Pt纳米颗粒的嘴在SiOx / Si界面上方的短距离停止。在随后的蚀刻步骤之后,获得具有直径下降至亚30nm的致密纳米孔通孔的膜。通过其简单的操作和高可控性,该制造方法提供了在低成本中快速地图案化固态纳米孔的致密阵列的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号