...
首页> 外文期刊>Nanotechnology >Dual nanotransfer printing for complementary plasmonic biosensors
【24h】

Dual nanotransfer printing for complementary plasmonic biosensors

机译:互补等离子体传感器的双纳米转器印刷

获取原文
获取原文并翻译 | 示例
           

摘要

One of the main challenges in the widespread utilization of localized plasmon resonance-based biosensors is the fabrication of large-area and low-cost plasmonic nanostructures. In this work, we fabricated large-area and low-cost complementary plasmonic biosensors such as nanohole and nanodisk arrays using dual nanotransfer printing (NTP) with a single metal deposition and a single reusable mold. The suspended nanohole arrays and the suspended nanodisk arrays were fabricated using the subsequent dry etching process. We confirmed a maximum enhancement in bulk sensitivity in experiments and simulations by controlling the vertical and lateral etching depths of the dielectric layer underneath the gold (Au) nanohole and nanodisk arrays. Furthermore, we show that the surface sensitivity evaluated by atomic layer deposition of aluminum oxide increased because appropriate vertical and lateral etching depths allow the target analyte to access the additional near-field formed at the bottom of the Au nanostructure. The dual NTP method provides a practical solution for the realization of large-area and low-cost label-free plasmonic biosensing systems, with a reduction in complexity and cost of the fabrication process of complementary plasmonic structures and metasurfaces.
机译:局部化等离子体共振的生物传感器广泛利用的主要挑战之一是大面积和低成本等离子体纳米结构的制造。在这项工作中,我们使用双纳米转器印刷(NTP)制造了大面积和低成本的互补等离子体传感器,例如具有单个金属沉积和单个可重复使用的模具的双纳米传输印刷(NTP)。使用随后的干蚀刻工艺制造悬浮的纳米孔阵列和悬浮的纳米型阵列。我们通过控制金(AU)纳米孔和纳米型磁盘阵列下方的介电层的垂直和横向蚀刻深度来确认批量灵敏度的最大增强。此外,我们表明,通过铝氧化铝的原子层沉积评价的表面敏感性,因为适当的垂直和横向蚀刻深度允许目标分析物进入形成在Au纳米结构底部的附加近场。双NTP方法提供了实现大面积和低成本的无标签等离子体化生物传感系统的实用解决方案,其复杂性和成本降低了互补等离子体结构和元卷积的制造过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号