...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Carbon isotope fractionation during diamond growth in depleted peridotite: Counterintuitive insights from modelling water-maximum CHO fluids as multi-component systems
【24h】

Carbon isotope fractionation during diamond growth in depleted peridotite: Counterintuitive insights from modelling water-maximum CHO fluids as multi-component systems

机译:碳同位素分馏在耗尽的恒星中的金刚石生长:根据多组分系统模拟水最大CHO流体的反向思想

获取原文
获取原文并翻译 | 示例
           

摘要

Because of the inability of depleted cratonic peridotites to effectively buffer oxygen fugacities when infiltrated by CHO or carbonatitic fluids, it has been proposed recently (Luth and Stachel, 2014) that diamond formation in peridotites typicallY does not occur by rock-buffered redox reactions as previously thought but by an oxygen-conserving reaction in which minor coexisting CH4 and CO2 components in a water-rich fluid react to form diamond (CO2 + CH4 = 2C + 2H(2)O). In such fluid-buffered systems, carbon isotope fractionation during diamond precipitation occurs in the presence of two dominant fluid carbon species. Carbon isotope modelling of diamond precipitation from mixed CH4- and CO2-bearing fluids reveals unexpected fundamental differences relative to diamond crystallization from a single carbon fluid species: (1) irrespective of which carbon fluid species (CH4 or CO2) is dominant in the initial fluid, diamond formation is invariably associated with progressive minor (<1 parts per thousand) enrichment of diamond in C-13 as crystallization proceeds. This is in contrast to diamond precipitation by rock-buffered redox processes from a fluid containing only a single carbon species, which can result in either progressive C-13 enrichment (CO2 or carbonate fluids) or C-13 depletion (CH4 fluids) in the diamond. (2) Fluid speciation is the key factor controlling diamond delta C-13 values; as X-CO2 (X-CO2 = CO2/[CO2 + CH4]) in the initial fluid increases from 0.1 to 0.9 (corresponding to an increase in fO(2) of 0.8 log units), the carbon isotope composition of the first-precipitated diamond decreases by 3.7 parts per thousand. The tight mode in delta C-13 of -5 +/- 1%o for diamonds worldwide places strict constraints on the dominant range of X-CO2 in water-rich fluids responsible for diamond formation. Specifically, precipitation of diamonds with delta C-13 values in the range -4 to -6%o from mantle-derived fluids with an average delta C-13 value of -5 parts per thousand (derived from evidence not related to diamonds) requires that diamond-forming fluids were relatively reduced and had methane as the dominant carbon species (X-CO2 = 0.1-0.5).
机译:由于在CHO或碳酸酯流体渗透时有效地缓冲氧气度假率的耗尽阶层,最近(LUTH和STACHEL,2014)已经提出了岩石中的金刚石形成通常不会通过如前所述的岩石缓冲氧化还原反应而产生的思想,而是通过氧保守反应,其中在富含水的流体中的次要共存CH4和CO 2组分反应形成金刚石(CO 2 + CH 4 = 2℃+ 2H(2)O)。在这种流体缓冲的系统中,金刚石沉淀过程中的碳同位素分馏在两个主要的流体碳物种存在下发生。来自混合CH 4和CO 2轴承流体的金刚石沉淀的碳同位素造型揭示了来自单个碳流体物种的金刚石结晶的意外的根本差异:(1)无论哪种碳流体物种(CH4或CO2)都在初始流体中显着,金刚石形成总是与C-13中的渐进剂(<1份每千份)富集而与C-13中的富集有关,因为结晶所得。这与来自含有单个碳物质的流体的岩石缓冲氧化还原方法形成对比,这可能导致渐进式C-13富集(CO 2或碳酸酯)或C-13耗尽(CH4流体)。钻石。 (2)流体形态是控制钻石ΔC-13值的关键因素;作为初始流体中的X-CO 2(X-CO2 = CO2 / [CO2 + CH4])从0.1升至0.9(对应于0.8对数单位的0.8个对数单位的增加),第一个 - 的碳同位素组成沉淀的金刚石减少了3.7份每千份。全球钻石的Delta C-13中的ΔC-13中的紧密模式会使负责金刚石形成的水富液体中的X-CO2的主导范围限制。具体地,具有δC-13值的含量沉淀在-4至-6%o的范围-4至-6%o,从地幔衍生的流体,平均δc-13值为-5‰(来自与钻石无关的证据)需要菱形流体相对减少并具有甲烷作为主要碳物质(X-CO 2 = 0.1-0.5)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号