...
【24h】

Modelling komatiitic melt accumulation and segregation in the transition zone

机译:在过渡区建模柯马蒂蒂米熔体积累和偏析

获取原文
获取原文并翻译 | 示例
           

摘要

Komatiites are probably produced in very hot mantle upwellings or plumes. Under such conditions, melting will take place deep within the upper mantle or even within the mantle transition zone. Due to its compressibility at such pressures, melt might be denser than olivine, but would remain buoyant with respect to a peridotitic mantle both above and below the olivine-wadsleyite phase boundary because of the presence of its higher temperature and denser garnet. We studied the physics of melting and melt segregation within hot upwelling mantle passing through the transition zone, with particular emphasis on the effect of depth-dependent density contrasts between melt and ambient mantle. Assuming a 1D plume, we solved the two-phase flow equations of the melt-matrix system accounting for matrix compaction and porosity-dependent shear and bulk viscosity. We assumed a constant ascent velocity and melt generation rate. In a first model series, the level of neutral buoyancy Z(neutr) is assumed to lie above the depth of onset of melting, i.e. there exists a region where dense melt may lag behind the solid phases within the rising plume. Depending on two non-dimensional numbers (accumulation number Ac, compaction resistance number Cr) we find four regimes: 1) time-dependent melt accumulation in standing porosity waves that scale with the compaction length. The lowermost of these waves broadens with time until a high melt accumulation zone is formed in steady state. During this transient solitary porosity waves may cross the depth of neutral density and escape. 2) steady-state weak melt accumulation near Zneutr, 3) no melt accumulation due to small density contrast or, 4) high matrix viscosity. In regime 4 the high mantle viscosity prevents the opening of pore space necessary to accumulate melt. In a second series, the rising mantle crosses the olivine-wadsleyite phase boundary, which imposes a jump in density contrast between melt and ambient mantle. A sharp melt porosity contrast develops and a large melt porosity accumulates immediately above the phase boundary. Both model series show 1) that not only melt density, but also porosity-dependent matrix viscosity controls the melt ascent or accumulation, 2) that there are parameter ranges and physical conditions which may lead to the accumulation of very large melt porosities (> degree of melting), 3) that in spite of melt being denser than olivine at some depths, in general these melts escape these regions and continue to percolate upward faster than the rising mantle. Melting and melt transport under the conditions predicted by the numerical modelling is able to reproduce the compositions of the main types of komatiite. Thus, the accumulation of large melt fractions, and sequential escape of melt from porosity waves, explains several puzzling features of the geochemical compositions of komatiites. (C) 2017 Elsevier B.V. All rights reserved.
机译:Komatiites可能在非常热的地幔上升或羽毛中产生。在这种条件下,熔化将在上部地幔内部或甚至在地幔过渡区内进行。由于其在这种压力下的可压缩性,熔体可能比橄榄石更密集,但由于其较高温度和更密集的石榴石的存在,橄榄石杂物相位边界上方和低于橄榄石 - 左侧型相位边界的偏异性露线,因此将稳定。我们研究了通过过渡区的热升温罩的熔化和熔化隔离物理学,特别强调熔体和环境幔之间深度依赖性密度对比的影响。假设1D羽流,我们解决了熔融矩阵系统的两相流动方程,核对基质压实和孔隙依赖性剪切和体粘度。我们承担了恒定的上升速度和熔体生成率。在第一模型系列中,假设中性浮力Z(Negryr)的水平位于熔化的开始深度,即存在致密熔体在上升羽流内的固体相位后滞后的区域。根据两个非尺寸数字(累积数AC,压实电阻号码CR),我们发现四个制度:1)与压实长度缩放的站立孔隙率波中的时间依赖性熔体积累。这些波的最下部随着时间的推移而变宽,直到在稳态形成高熔体累积区。在该瞬态孤立孔隙波期间,波浪可能会穿过中性密度的深度并逸出。 2)稳态弱熔体积累在Zneutr,3)由于小密度对比度或4)高矩阵粘度,没有熔体积累。在制度4中,高地幔粘度可防止开口覆盖熔体所需的孔隙空间。在第二个系列中,上升的地幔穿过橄榄石 - 鲸矿相边界,这施加了熔体和环境幔之间的密度对比度的跳跃。急剧熔体孔隙率对比度产生和大的熔体孔隙率在相边界上方立即积聚。模型系列显示1)不仅熔化密度,而且孔隙依赖性矩阵粘度控制熔体上升或累积,2)有可能导致非常大的熔体孔隙孔的积累(>度)的参数范围和物理条件熔化),3)尽管熔体在一些深度的橄榄石的液体上浓密,但一般而言,这些熔体逃离了这些区域并继续渗透到比上升的幔更快地渗透。在数值建模预测的条件下熔化和熔化运输能够再现主要类型的KomaTiite的组成。因此,大熔融级分的积累,以及从孔隙率波的熔体脱落,解释了柯马蒂斯地球化学组成的几种令人困惑的特征。 (c)2017年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号