...
【24h】

Subarctic physicochemical weathering of serpentinized peridotite

机译:亚立蛋白化恒星的亚曲形学理化风化

获取原文
获取原文并翻译 | 示例
           

摘要

Frost weathering is effective in arctic and subarctic climate zones where chemical reactions are limited by the reduced availability of liquid water and the prevailing low temperature. However, small scale mineral dissolution reactions are nevertheless important for the generation of porosity by allowing infiltration of surface water with subsequent fracturing due to growth of ice and carbonate minerals. Here we combine textural and mineralogical observations in natural samples of partly serpentinized ultramafic rocks with a discrete element model describing the fracture mechanics of a solid when subject to pressure from the growth of ice and carbonate minerals in surface-near fractures. The mechanical model is coupled with a reaction-diffusion model that describes an initial stage of brucite dissolution as observed during weathering of serpentinized harzburgites and dunites from the Feragen Ultramafic Body (FUB), SE-Norway. Olivine and serpentine are effectively inert at relevant conditions and time scales, whereas brucite dissolution produces well-defined cm to dm thick weathering rinds with elevated porosity that allows influx of water. Brucite dissolution also increases the water saturation state with respect to hydrous Mg carbonate minerals, which are commonly found as infill in fractures in the fresh rock. This suggests that fracture propagation is at least partly driven by carbonate precipitation. Dissolution of secondary carbonate minerals during favorable climatic conditions provides open space available for ice crystallization that drives fracturing during winter. Our model reproduces the observed cm-scale meandering fractures that propagate into the fresh part of the rock, as well as dm-scale fractures that initiate the breakup of larger domains. Rock disintegration increases the reactive surface area and hence the rate of chemical weathering, enhances transport of dissolved and particulate matter in the weathering fluid, and facilitates CO2 uptake by car
机译:霜风化在北极和亚神奇气候区具有有效的,其中化学反应受到液态水可用性和普遍存在的低温的限制。然而,通过允许由于冰和碳酸盐矿物质生长,通过随后的压裂来产生孔隙率来产生小规模的矿物溶解反应。在这里,我们将部分蛇形超岩石的天然样品中的纹理和矿物学观察结合,其具有分立元素模型,该分立元素模型描述了在表面近骨折中冰和碳酸盐矿物质生长的压力时固体的裂缝力学。机械模型与反应扩散模型相结合,所述反应扩散模型描述了在来自Feragen Ultramafic Body(Fub),Se-Norway的锯齿化的Harzburgites和Dunites的静脉化的哈尔茨堡和Dunites的初始阶段。在相关条件和时间尺度的情况下,橄榄石和蛇形有效地惰性,而布鲁氏岩溶解会产生明确定义的Cm至DM厚的风化轮廓,允许孔隙率升高。 Brucite溶解还增加了含水Mg碳酸盐矿物的水饱和状态,通常在新鲜岩石中裂缝中的填充物。这表明断裂繁殖至少部分地由碳酸盐沉淀驱动。在有利的气候条件下溶解二次碳酸盐矿物质提供可用于冰结晶的开放空间,以便在冬季进行压裂。我们的模型再现观察到的CM尺寸曲折骨折,该裂缝繁殖到岩石的新鲜部分中,以及发起更大域分解的DM级骨折。岩石崩解增加了反应性表面积,从而增加了化学风化的速度,增强了耐候液中溶解和颗粒物质的运输,并通过汽车促进CO2吸收

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号