...
【24h】

The fate of carbonate in oceanic crust subducted into earth's lower mantle

机译:海底碳酸盐的命运被滤成了地球下部地幔

获取原文
获取原文并翻译 | 示例
           

摘要

We report on laser-heated diamond anvil cell (LHDAC) experiments in the FeO-MgO-SiO2-CO2 (FMSC) and CaO-MgO-SiO2-CO2 (CMSC) systems at lower mantle pressures designed to test for decarbonation and diamond forming reactions. Sub-solidus phase relations based on synthesis experiments are reported in the pressure range of similar to 35 to 90 GPa at temperatures of similar to 1600 to 2200 K. Ternary bulk compositions comprised of mixtures of carbonate and silica are constructed such that decarbonation reactions produce non-ternary phases (e.g. bridgmanite, Ca-perovskite, diamond, CO2-V), and synchrotron X-ray diffraction and micro-Raman spectroscopy are used to identify the appearance of reaction products. We find that carbonate phases in these two systems react with silica to form bridgmanite +/- Ca-perovskite + CO2 at pressures in the range of similar to 40 to 70 GPa and 1600 to 1900 K in decarbonation reactions with negative Clapeyron slopes. Our results show that decarbonation reactions form an impenetrable barrier to subduction of carbonate in oceanic crust to depths in the mantle greater than similar to 1500 km. We also identify carbonate and CO2-V dissociation reactions that form diamond plus oxygen. On the basis of the observed decarbonation reactions we predict that the ultimate fate of carbonate in oceanic crust subducted into the deep lower mantle is in the form of refractory diamond in the deepest lower mantle along a slab geotherm and throughout the lower mantle along a mantle geotherm. Diamond produced in oceanic crust by subsolidus decarbonation is refractory and immobile and can be stored at the base of the mantle over long timescales, potentially returning to the surface in OIB magmas associated with deep mantle plumes. (C) 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
机译:在较低的地幔压力下,我们在FeO-MgO-SiO2-CO2(FMSC)和CAO-MgO-SiO2-CO2(CMSC)系统中的激光加热金刚石砧座(LHDAC)实验报告,该垫片压力设计用于试验脱碳和金刚石形成反应。基于合成实验的亚固相相关系在类似于35至90gPa的温度范围内报道,在类似于1600至2200k的温度下,构成由碳酸酯和二氧化硅混合物组成的三元体组合物,使得脱碳反应产生非 - 阶段(例如Bridgmanite,Ca-perovskite,金刚石,CO2-V)和同步X射线衍射和微拉曼光谱用于识别反应产物的外观。我们发现这两个系统中的碳酸酯相与二氧化硅反应,以在与负卵形斜面的脱碳反应中相似的压力下形成Bridgmanite +/- Ca-Perovskite + CO 2。我们的研究结果表明,脱碳反应形成了对海底碳酸酯俯冲的抗必要障碍,以至于地幔中的深度大于类似于1500公里。我们还鉴定形成金刚石加氧的碳酸盐和CO2-V解离反应。在观察到的脱碳反应的基础上,我们预测,碳酸盐在深层地幔中的碳酸盐的最终命运是沿着平板地热和沿着地毯地热处理的平板地毯的最深下的地幔中难钻的形式。通过脱碳剂在海洋外壳中产生的金刚石是难治性和不动的,并且可以在长时间尺度上储存在地幔的底部,潜在地返回与深色披风羽毛相关的OIB岩棉的表面。 (c)2019年作者。由elsevier b.v出版。这是CC下的公开访问文章。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号