...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Seismic velocity structure across the 2013 Craig, Alaska rupture from aftershock tomography: Implications for seismogenic conditions
【24h】

Seismic velocity structure across the 2013 Craig, Alaska rupture from aftershock tomography: Implications for seismogenic conditions

机译:2013年克雷格的地震速度结构,阿拉斯加从余震断层扫描破裂:对地震病症的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The 2013 Craig, Alaska M-w 7.5 earthquake ruptured along similar to 150 km of the Queen Charlotte Fault (QCF), a right-lateral strike-slip plate boundary fault separating the Pacific and North American plates. Regional shear wave analyses suggest that the Craig earthquake rupture propagated in the northward direction faster than the S-wave (supershear). Theoretical studies suggest that a bimaterial interface, such as that along the QCF, which separates oceanic and continental crust with differing elastic properties, can promote supershear rupture propagation. We deployed short-period ocean-bottom seismometers (OBS) as a part of a rapid-response effort less than four months after the Craig earthquake mainshock. During a 21-day period, 1,133 aftershocks were recorded by 8 OBS instruments. Aftershock spatial distribution indicates that the base of the seismogenic zone along the QCF approaches similar to 25 km depth, consistent with a thermally-controlled fault rheology expected for igneous rocks at oceanic transform faults. The spatial distribution also provides supporting evidence for a previously hypothesized active strand of the QCF system within the Pacific Plate. Tomographic traveltime inversion for velocity structure indicates a low-velocity (V-P and V-S) zone on the Pacific side of the plate boundary at 5-20 km depths, where Neogene Pacific crust and upper mantle seismic velocities average similar to 3-11% slower than the North American side, where the Paleozoic North American crust is seismically faster. Our results suggest that elastic properties along the studied portion of the QCF are different than those of a simple oceanic-continental plate boundary fault. In our study region, velocity structure across the QCF, while bimaterial, does not support faster material on the west side of the fault, which has been proposed as one possible explanation for northward supershear propagation during the Craig earthquake. Instead, we image low-velocity material on the we
机译:2013年克雷格,阿拉斯加M-W 7.5地震沿着20公里的女王夏洛特故障(QCF),右侧防滑板边界断裂分离,分离太平洋和北美板材。区域剪切波分析表明,克雷格地震破裂在向北方向比S波(超频)传播。理论研究表明,一种双层界面,例如沿着QCF,将海洋和欧陆地壳分开具有不同弹性性质的QCF,可以促进超级破裂繁殖。我们部署了短期海底地震仪(OBS),作为克雷格地震主震后四个月的快速反应工作的一部分。在为期21天的时间内,8个OBS仪器记录了1,133个余震。余震空间分布表明,沿QCF的碱基碱的碱度与25公里深度相似,与海洋变换故障中的火岩预期的热控故障流变学相一致。空间分布还提供了在太平板内QCF系统的先前假设的活性股线的支持证据。速度结构的断层扫描旅行时间反转表明了板边界的太平洋侧的低速(VP和VS)区域,在5-20公里深度,其中Neogene Pacific地壳和上部地幔地震速度平均值比3-11%慢于3-11%北美侧面,古生代北美地壳正在争夺速度。我们的研究结果表明,QCF的研究部分的弹性特性与简单的海洋大陆板边界断层不同。在我们的研究区域中,QCF的速度结构,而BimateSial,不支持故障的西侧的更快材料,这已被提议作为克雷格地震期间向北超海传播的一个可能的解释。相反,我们在我们身上映像低速材料

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号