...
【24h】

Hydrogen isotopic evidence for early oxidation of silicate Earth

机译:用于早期氧化硅酸盐地球的氢同位素证据

获取原文
获取原文并翻译 | 示例
           

摘要

The Moon-forming giant impact extensively melts and partially vaporizes the silicate Earth and delivers a substantial mass of metal to Earth's core. The subsequent evolution of the magma ocean and overlying atmosphere has been described by theoretical models but observable constraints on this epoch have proved elusive. Here, we report thermodynamic and climate calculations of the primordial atmosphere during the magma ocean and water ocean epochs respectively and forge new links with observations to gain insight into the behavior of volatiles on the Hadean Earth. As accretion wanes, Earth's magma ocean crystallizes, outgassing the bulk of its volatiles into the primordial atmosphere. The redox state of the magma ocean controls both the chemical composition of the outgassed volatiles and the hydrogen isotopic composition of water oceans that remain after hydrogen escape from the primordial atmosphere. The climate modeling indicates that multi-bar H-2-rich atmospheres generate sufficient greenhouse warming and rapid kinetics resulting in ocean-atmosphere H2O-H-2 isotopic equilibration. Whereas water condenses and is mostly retained, molecular hydrogen does not condense and can escape, allowing large quantities (similar to 10(2) bars) of hydrogen - if present - to be lost from the Earth in this epoch. Because the escaping inventory of H can be comparable to the hydrogen inventory in primordial water oceans, equilibrium deuterium enrichment can be large with a magnitude that depends on the initial atmospheric H-2 inventory. With rapid kinetics, the water molecule concentrates deuterium and, to the extent that hydrogen in other forms (e.g., H-2) are significant species in the outgassed atmosphere, pronounced D/H enrichments (similar to 1.5-2x) in the oceans are expected from equilibrium partitioning in this epoch. By contrast, the common view that terrestrial water has a carbonaceous chondritic source requires the oceans to preserve the isotopic composition of that sourc
机译:形成甘硅巨头的巨大巨大冲击并部分蒸发硅酸盐地球,并将大量的金属送到地球的核心。在理论模型中描述了岩浆海洋和覆盖氛围的随后演变,但在这一时代的可观察限制已经证明了难以捉摸。在这里,我们报告了在岩浆海洋和水海洋时期的原始气氛的热力学和气候计算,并与观察结果造成了新的联系,以深入了解哈达亚地球挥发物的行为。作为吸收的徘徊,地球的岩浆海洋结晶,将其挥发物的大部分分配到原始气氛中。岩浆海洋的氧化还原状态控制了除气挥发物的化学成分和水海的氢同位素组成,其留在原始气氛中逃逸后仍然存在。气候建模表明,多条H-2丰富的大气产生足够的温室变暖和快速动力学,导致海洋气氛H2O-H-2同位素平衡。虽然水冷凝并大多保留,分子氢不浓缩并且可以逸出,允许大量(类似于10(2)杆)的氢气 - 如果存在 - 从该时期的地球丢失。因为H的逃逸库存可以与原始水海洋中的氢库存相当,所以平衡氘富集可以大,其幅度较大,这取决于初始大气H-2库存。随着动力学的快速动力学,水分子浓缩氘,并且在其他形式(例如,H-2)中的氢气在分散气氛中是显着物种的程度,在海洋中发明的D / H浓缩(类似于1.5-2X)预计在该时代均衡分区。相比之下,陆地水具有碳质的软体病来源的公共观点需要海洋以保护该酶的同位素组成

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号