...
首页> 外文期刊>Nanotechnology >Strain controlled ferromagnetic-ferrimagnetic transition and vacancy formation energy of defective graphene
【24h】

Strain controlled ferromagnetic-ferrimagnetic transition and vacancy formation energy of defective graphene

机译:缺陷石墨烯的应变控制铁磁-铁磁转变和空位形成能

获取原文
获取原文并翻译 | 示例
           

摘要

Single vacancy (SV)-induced magnetism in graphene has attracted much attention motivated by its potential in achieving new functionalities. However, a much higher vacancy formation energy limits its direct application in electronic devices and the dependency of spin interaction on the strain is unclear. Here, through first-principles density-functional theory calculations, we investigate the possibility of strain engineering towards lowering vacancy formation energy and inducing new magnetic states in defective graphene. It is found that the SV-graphene undergoes a phase transition from an initial ferromagnetic state to a ferrimagnetic state under a biaxial tensile strain. At the same time, the biaxial tensile strain significantly lowers the vacancy formation energy. The charge density, density of states and band theory successfully identify the origin and underlying physics of the transition. The predicted magnetic phase transition is attributed to the strain driven spin flipping at the C-atoms nearest to the SV-site. The magnetic semiconducting graphene induced by defect and strain engineering suggests an effective way to modulate both spin and electronic degrees of freedom in future spintronic devices.
机译:石墨烯中单空位(SV)诱导的磁性吸引了很多注意力,其诱因是它具有实现新功能的潜力。然而,更高的空位形成能限制了其在电子设备中的直接应用,并且自旋相互作用对应变的依赖性尚不清楚。在这里,通过第一性原理密度泛函理论计算,我们研究了应变工程在缺陷石墨烯中降低空位形成能和诱导新的磁态的可能性。发现在双轴拉伸应变下,SV-石墨烯经历了从初始铁磁态到亚铁磁态的相变。同时,双轴拉伸应变显着降低了空位形成能。电荷密度,状态密度和能带理论成功地确定了跃迁的起源和基础物理。预测的磁性相变归因于应变驱动的自旋翻转,最接近SV部位的C原子处。由缺陷和应变工程诱发的磁性半导体石墨烯提出了一种有效的方式,可以在未来的自旋电子器件中同时调节自旋和电子自由度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号