...
首页> 外文期刊>Nanotechnology >Titanium nanostructures for biomedical applications
【24h】

Titanium nanostructures for biomedical applications

机译:生物医学应用的钛纳米结构

获取原文
获取原文并翻译 | 示例
           

摘要

Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.
机译:钛和钛合金展现出强度和生物相容性的独特组合,使其能够用于医疗应用,并在过去50年中广泛用作植入材料。当前,为了确定用于生物应用的最佳表面形貌,正在进行大量研究,因此重点是用于生物医学应用的纳米技术。最近显示,具有粗糙表面形貌和自由能的钛植入物可增加成骨细胞的粘附,成熟和随后的骨形成。此外,不同细胞系对钛植入物表面的粘附力还受钛表面特性的影响。即地形,电荷分布和化学。本篇综述文章重点介绍了钛的特定纳米形貌,即使用金属基材的简单电化学阳极氧化方法和其他工艺(例如水热模板或溶胶-凝胶模板)制成的钛的特定纳米形貌。在细胞相互作用中使用TiO2纳米管的一个主要优势是基于以下事实:TiO2纳米管的形态与间充质干细胞的细胞粘附,扩散,生长和分化相关,事实表明,这种粘附最大程度地诱导了较小直径的纳米管(15 nm)。 ,但在较大直径(100 nm)的试管上受阻,导致细胞死亡和凋亡。研究支持了纳米形貌(TiO2纳米管直径)在细胞粘附和细胞生长中的重要性,并表明在不同细胞类型之间,局部粘附形成的机理相似。因此,本综述将集中于可能最壮观和令人惊讶的一维结构及其在增加骨整合,蛋白质相互作用和抗菌性能方面的独特生物医学应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号