...
首页> 外文期刊>Nanotechnology >Effect of intermolecular force on the static/dynamic behaviour of M/NEM devices
【24h】

Effect of intermolecular force on the static/dynamic behaviour of M/NEM devices

机译:分子间力对M / NEM设备静态/动态行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Advances made in the fabrication of microano-electromechanical (M/NEM) devices over the last ten years necessitate the understanding of the attractive force that arises from quantum fluctuations (generally referred to as Casimir effects) [Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51 793]. The fundamental mechanisms underlying quantum fluctuations have been actively investigated through various theoretical and experimental approaches. However, the effect of the force on M/NEM devices has not been fully understood yet, especially in the transition region involving gaps ranging from 10 nm to 1 mu m, due to the complexity of the force. Here, we numerically calculate the Casimir effects in M/NEM devices by using the Lifshitz formula, the general expression for the Casimir effects [Lifshitz E 1956 Sov. Phys. JETP 2 73]. Since the Casimir effects are highly dependent on the permittivity of the materials, the Kramer-Kronig relation [Landau L D, Lifshitz E M and Pitaevskii L P 1984 Electrodynamics of Continuous Media (New York: Pergamon Press)] and the optical data for metals and dielectrics are used in order to obtain the permittivity. Several simplified models for the permittivity of the materials, such as the Drude and Lorentz models [Jackson J D 1975 Classical Electrodynamics (New York: Wiley)], are also used to extrapolate the optical data. Important characteristic values of M/NEM devices, such as the pull-in voltage, pull-in gap, detachment length, etc, are calculated for devices operating in the transition region. Our results show that accurate predictions for the pull-in behaviour are possible when the Lifshitz formula is used instead of the idealized expressions for Casimir effects. We expand this study into the dynamics of M/NEM devices, so that the time and frequency response of M/NEM devices with Casimir effects can be explored.
机译:在过去的十年中,微/纳米机电(M / NEM)器件的制造取得了进步,因此有必要了解由量子涨落(通常称为卡西米尔效应)引起的吸引力[Casimir H B G 1948 Proc。内德阿卡德湿。 51 793]。量子涨落的基本机理已经通过各种理论和实验方法进行了积极研究。然而,由于力的复杂性,尚未完全理解力对M / NEM装置的影响,特别是在涉及范围为10nm至1μm的间隙的过渡区域中。在这里,我们使用Lifshitz公式(卡西米尔效应的一般表达形式[Lifshitz E 1956 Sov。物理JETP 2 73]。由于卡西米尔效应高度依赖于材料的介电常数,因此,Kramer-Kronig关系式[Landau LD,Lifshitz EM和Pitaevskii LP 1984连续介质的电动力学(纽约:Pergamon Press)]和金属和电介质的光学数据为用于获得介电常数。还使用了几种简化的材料介电常数模型,例如Drude和Lorentz模型[Jackson J D 1975经典电动力学(纽约:Wiley)],以推断光学数据。 M / NEM设备的重要特性值,例如,引入电压,引入间隙,分离长度等,是为在过渡区域中工作的设备计算的。我们的结果表明,当使用Lifshitz公式代替卡西米尔效应的理想化表达式时,可以准确地预测引入行为。我们将这项研究扩展到M / NEM设备的动力学中,从而可以探索具有卡西米尔效应的M / NEM设备的时间和频率响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号