...
首页> 外文期刊>Nanotechnology >High electrical conductance enhancement in Au-nanoparticle decorated sparse single-wall carbon nanotube networks
【24h】

High electrical conductance enhancement in Au-nanoparticle decorated sparse single-wall carbon nanotube networks

机译:纳米金修饰的稀疏单壁碳纳米管网络中的高电导增强

获取原文
获取原文并翻译 | 示例
           

摘要

We report high electrical conductance enhancement in sparse single-walled carbon nanotube networks by decoration with Au nanoparticles. The optimized hybrid network exhibited a sheet resistance of 650 Ω sq~(-1), 1/1500 of the resistance of the host undecorated network, with a negligible optical transmission penalty (>90% transmittance at 550 nm wavelength). The electrical transport at room temperature in the host and decorated networks was dominated by two-dimensional variable range hopping. The high conductance enhancement was due to positive charge transfer from the decorating Au nanoparticles in intimate contact with the host network causing a Fermi energy shift into the high density of states at a van Hove singularity and enhanced electron delocalization relative to the host network which beneficially modifies the hopping parameters in such a way that the network behaves as an integral whole. The effect is most pronounced when the nanoparticle diameter is comparable to the electron mean free path in the bulk material at room temperature and there is minimum nanoparticle agglomeration. For higher than optimal values of nanoparticle coverage or nanoparticle diameter, the conductance enhancement is countered by metallic inclusions in the current pathways that are of higher resistance than the variable range hopping-controlled elements.
机译:我们报告了通过用金纳米粒子装饰在稀疏单壁碳纳米管网络中的高电导率增强。优化的混合网络的薄层电阻为650Ωsq(-1),是未经修饰的宿主网络的电阻的1500/1500,光传输损失可忽略不计(在550 nm波长下的透射率> 90%)。主机和装饰网络在室温下的电传输主要由二维可变范围跳变控制。高电导率的提高是由于与主体网络紧密接触的修饰Au纳米粒子的正电荷转移,导致费米能量以van Hove奇异性转移到高密度的态中,并且相对于主体网络增强了电子离域作用,这有利于改性跳变参数以使网络表现为一个整体。当纳米粒子的直径与室温下的块状材料中的电子平均自由程相当时,并且纳米粒子的团聚最少,这种影响最为明显。对于高于纳米粒子覆盖率或纳米粒子直径的最佳值,电导率的提高被电流路径中的金属夹杂物抵消,该金属夹杂物的电阻高于可变范围跳变控制的元件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号