...
首页> 外文期刊>Nanotechnology >Controlled deterministic implantation by nanostencil lithography at the limit of ion-aperture straggling
【24h】

Controlled deterministic implantation by nanostencil lithography at the limit of ion-aperture straggling

机译:纳米孔版印刷技术在离子孔散乱的极限下控制确定性注入

获取原文
获取原文并翻译 | 示例
           

摘要

Solid state electronic devices fabricated in silicon employ many ion implantation steps in their fabrication. In nanoscale devices deterministic implants of dopant atoms with high spatial precision will be needed to overcome problems with statistical variations in device characteristics and to open new functionalities based on controlled quantum states of single atoms. However, to deterministically place a dopant atom with the required precision is a significant technological challenge. Here we address this challenge with a strategy based on stepped nanostencil lithography for the construction of arrays of single implanted atoms. We address the limit on spatial precision imposed by ion straggling in the nanostencil - fabricated with the readily available focused ion beam milling technique followed by Pt deposition. Two nanostencils have been fabricated; a 60 nm wide aperture in a 3 m thick Si cantilever and a 30 nm wide aperture in a 200 nm thick Si_3N_4 membrane. The 30 nm wide aperture demonstrates the fabricating process for sub-50 nm apertures while the 60 nm aperture was characterized with 500 keV He~+ ion forward scattering to measure the effect of ion straggling in the collimator and deduce a model for its internal structure using the GEANT4 ion transport code. This model is then applied to simulate collimation of a 14 keV P~+ ion beam in a 200 nm thick Si_3N_4 membrane nanostencil suitable for the implantation of donors in silicon. We simulate collimating apertures with widths in the range of 10-50 nm because we expect the onset of J-coupling in a device with 30 nm donor spacing. We find that straggling in the nanostencil produces mis-located implanted ions with a probability between 0.001 and 0.08 depending on the internal collimator profile and the alignment with the beam direction. This result is favourable for the rapid prototyping of a proof-of-principle device containing multiple deterministically implanted dopants.
机译:用硅制造的固态电子器件在其制造中采用许多离子注入步骤。在纳米级器件中,将需要具有高空间精度的确定性掺杂剂注入,以克服器件特性的统计变化问题并基于单个原子的受控量子态打开新的功能。然而,确定性地以所需的精度放置掺杂剂原子是一项重大的技术挑战。在这里,我们通过基于步进纳米模板光刻技术的单注入原子阵列的构建来应对这一挑战。我们解决了由纳米模板中的离子散乱施加的空间精度限制-用易于获得的聚焦离子束铣削技术制造,然后进行Pt沉积。已经制造了两个纳米模版。在3 m厚的Si悬臂中有60 nm宽的孔径,在200 nm厚的Si_3N_4膜中有30 nm宽的孔径。 30 nm宽的孔径演示了50 nm以下孔径的制造过程,而60 nm孔径的特征是500 keV He〜+离子正向散射,以测量准直仪中离子散逸的影响,并推导了其内部结构模型。 GEANT4离子传输代码。然后将该模型应用于模拟适合在硅中注入施主的200 nm厚Si_3N_4膜纳米模板中14 keV P〜+离子束的准直。我们模拟宽度在10-50 nm范围内的准直孔径,因为我们期望J耦合在施主间距为30 nm的设备中出现。我们发现纳米模板中的散布会产生位置不正确的注入离子,其概率在0.001和0.08之间,这取决于内部准直仪的轮廓和与射束方向的对准。该结果对于包含多种确定性注入的掺杂剂的原理验证装置的快速原型化是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号