...
首页> 外文期刊>International Journal of Quantum Chemistry >Theoretical investigation of the alloxan-dialuric acid redox cycle
【24h】

Theoretical investigation of the alloxan-dialuric acid redox cycle

机译:四氧嘧啶-二醛酸氧化还原循环的理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

The redox cycle between alloxan, a mild oxidizing agent, and its reduction partner, dialuric acid, is investigated using density functional theory. It is found that the initial step is the one-electron reduction of alloxan followed by protonation, yielding a stable neutral radical, AH·. The radical can then accept another electron to form the dialuric acid anion. The formation of this anion is thermodynamically favored in both the gas phase and in solution. The radical may also undergo dimerization to alloxantin, followed by the transfer of a proton from one moiety to another, yielding alloxan and dialuric acid. This reduction is thermodynamically feasible in the gas phase, but not in aqueous solution. In the case of reduction of alloxan by glutathione at the physiological pH, computed redox potentials indicate that a two-electron reduction is the favored course of reaction, yielding directly the dialuric acid anion, which then undergoes aerial oxidation to yield the superoxide radical. The redox cycling between alloxan and dialuric acid is responsible for the diabetogenic activity of alloxan, producing cytotoxic radicals on reoxidation of dialuric acid. ? 2013 Wiley Periodicals, Inc. Alloxan has long been used to induce diabetes in experimental animals in studies on diabetes mellitus, a metabolic disorder that affects several million people worldwide. The alloxan-dialuric acid redox cycle is believed to be responsible for the diabetogenecity of alloxan. Herein, the mechanism involved in this redox cycling is investigated, and it is found that alloxan is reduced by glutathione to the dialuric acid anion, which undergoes aerial oxidation to generate cytotoxic superoxide radicals, causing β-cell toxicity.
机译:使用密度泛函理论研究了四氧嘧啶(一种轻度氧化剂)与其还原伙伴二乙酸之间的氧化还原循环。发现最初的步骤是四氧嘧啶的单电子还原,然后进行质子化,生成稳定的中性自由基AH·。自由基然后可以接受另一个电子以形成二乙酸阴离子。该阴离子的形成在气相和溶液中在热力学上都是有利的。该基团也可以经历二聚化成四氧嘧啶,然后将质子从一个部分转移到另一部分,从而产生四氧嘧啶和二醛酸。这种还原在气相中在热力学上是可行的,但在水溶液中不是可行的。在谷胱甘肽在生理pH值下将四氧嘧啶还原的情况下,计算得出的氧化还原电势表明,两电子还原是优选的反应过程,直接产生了二硬脂酸阴离子,然后进行空气氧化产生超氧自由基。在四氧嘧啶和二醛酸之间的氧化还原循环负责四氧嘧啶的致糖尿病活性,在二醛酸再氧化时产生细胞毒性自由基。 ? 2013 Wiley Periodicals,Inc.长期以来,在糖尿病研究中,四氧嘧啶一直被用来在实验动物中诱发糖尿病,糖尿病是一种代谢性疾病,影响全球数百万人。据信,四氧嘧啶-二醛酸氧化还原循环是造成四氧嘧啶糖尿病的原因。在本文中,研究了该氧化还原循环所涉及的机理,发现四氧嘧啶被谷胱甘肽还原为二乙酸酸根阴离子,而其经空气氧化产生细胞毒性超氧自由基,从而引起β细胞毒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号