...
首页> 外文期刊>International Journal of Quantum Chemistry >Ergodicity and rapid electron delocalization - The dynamical mechanism of atomic reactivity and covalent bonding
【24h】

Ergodicity and rapid electron delocalization - The dynamical mechanism of atomic reactivity and covalent bonding

机译:遍历性和快速电子离域-原子反应性和共价键的动力学机理

获取原文
获取原文并翻译 | 示例
           

摘要

Surprisingly, the historical development of the understanding of the concept of covalent bonding is incomplete and the physical mechanism responsible for bonding is still the subject of debate among chemists. We argue that this is primarily due to the key role played by quantum mechanics and the peculiarity of the Coulomb interaction operating between the electrons and nuclei in molecules. A study of the simplest molecules H 2+ and H2 as well as the π-electron structure of planar conjugated hydrocarbon molecules leads to the conclusion that delocalization of electron dynamics is the key mechanism of covalent bonding. We find that the new concept of quantum ergodicity defined in terms of the globality of the energy eigenfunctions relates directly to covalent bonding. This is illustrated in the H?ckel model of the π-electrons in polyene molecules. An understanding results associating covalent bonding most fundamentally with the relaxation of nonergodic dynamical constraints upon the electron dynamics in atoms and molecules. The strain energy present due to these constraints can be crudely estimated by the comparison of the results of Thomas-Fermi (TF) density functional calculations, which can be carried out both with and without these constraints. We present results for the light atoms H through Ar indicating that there is a very considerable strain in most atoms with the exception of the inert gas atoms. For the atoms H through Ne, we can verify this picture by direct comparison of ergodic TF and self-consistent field-molecular orbital (SCF-MO) results. Comparison with atomization energies for some small molecules shows that due to repulsive mechanisms only a small fraction of the covalent strain energy is actually realized as binding energy in most molecules. The hydride molecules appear to be most efficient in utilizing the strain energy.
机译:令人惊讶的是,对共价键概念的理解的历史发展是不完整的,负责键的物理机制仍然是化学家争论的主题。我们认为,这主要归因于量子力学所发挥的关键作用以及电子和分子中的原子核之间发生的库仑相互作用的特殊性。对最简单的分子H 2+和H2以及平面共轭烃分子的π电子结构的研究得出结论,电子动力学的离域是共价键的关键机理。我们发现,根据能量本征函数的整体性定义的量子遍历性新概念直接与共价键相关。这在多烯分子中π电子的H?ckel模型中得到了说明。一种理解导致最基本的共价键与原子和分子中电子动力学的非遍历动力学约束的放宽相关联。可以通过比较Thomas-Fermi(TF)密度泛函计算的结果粗略地估计由于这些约束而出现的应变能,可以在有或没有这些约束的情况下进行计算。我们给出了轻原子H至Ar的结果,表明除惰性气体原子外,大多数原子中都有非常大的应变。对于从H到Ne的原子,我们可以通过将遍历TF和自洽场分子轨道(SCF-MO)结果进行直接比较来验证这张图片。与一些小分子的雾化能的比较表明,由于排斥机理,大多数分子中实际上只有一小部分共价应变能被实现为结合能。氢化物分子似乎最有效地利用了应变能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号