...
首页> 外文期刊>Applied optics >Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 mu m
【24h】

Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 mu m

机译:基于地面的集成路径差分吸收LIDAR在1.6微米附近测量CO2,CH4和H2O

获取原文
获取原文并翻译 | 示例
           

摘要

A ground-based, integrated path, differential absorption light detection and ranging (IPDA LIDAR) system is described and characterized for a series of nighttime studies of CO2, CH4, and H2O. The transmitter is based on an actively stabilized, continuous-wave, single-frequency external-cavity diode laser (ECDL) operating from 1.60 to 1.65 mu m. The fixed frequency output of the ECDL is microwave sideband tuned using an electro-optical phase modulator driven by an arbitrary waveform generator and filtered using a confocal cavity to generate a sequence of 123 frequencies separated by 300 MHz. The scan sequence of single sideband frequencies of 600 ns duration covers a 37 GHz region at a spectral scan rate of 10 kHz (100 mu s per scan). Simultaneously, an eye-safe backscatter LIDAR system at 1.064 mu m is used to monitor the atmospheric boundary layer. IPDA LIDAR measurements of the CO2 and CH4 dry air mixing ratios are presented in comparison with those from a commercial cavity ringdown (CRD) instrument. Differences between the IPDA LIDAR and CRD concentrations in several cases appear to be well correlated with the atmospheric aerosol structure from the backscatter LIDAR measurements. IPDA LIDAR dry air mixing ratios of CO2 and CH4 are determined with fit uncertainties of 2.8 mu mol/mol (ppm) for CO2 and 22 nmol/mol (ppb) for CH4 over 30 s measurement periods. For longer averaging times (up to 1200 s), improvements in these detection limits by up to 3-fold are estimated from Allan variance analyses. Two sources of systematic error are identified and methods to remove them are discussed, including speckle interference from wavelength decorrelation and the seed power dependence of amplified spontaneous emission. Accuracies in the dry air retrievals of CO2 and CH4 in a 30 s measurement period are estimated at 4 mu mol/mol (1% of ambient levels) and 50 nmol/ mol (3%), respectively.
机译:本文介绍了一种地面综合路径,差分吸收光检测和测距(IPDA LIDAR)系统,并对其进行了一系列夜间研究CO2,CH4和H2O的系统。该发射器基于有源稳定的连续波单频外腔二极管激光器(ECDL),工作频率为1.60至1.65μm。使用由任意波形发生器驱动的电光相位调制器对ECDL的固定频率输出进行微波边带调谐,并使用共焦腔进行滤波,以生成由300 MHz分隔的123个频率序列。持续时间为600 ns的单边带频率的扫描序列以10 kHz的频谱扫描速率(每次扫描100μs)覆盖37 GHz区域。同时,使用1.064微米的人眼安全反向散射激光雷达系统监测大气边界层。与商用型腔振铃(CRD)仪器相比,IPDA LIDAR测量了CO2和CH4干燥空气混合比。在某些情况下,根据反向散射LIDAR测量,IPDA LIDAR和CRD浓度之间的差异似乎与大气气溶胶结构密切相关。在30 s的测量期间内,确定CO2和CH4的IPDA LIDAR干空气混合比时,CO2的拟合不确定度为2.8μmol/ mol(ppm),CH4的拟合不确定度为22 nmol / mol(ppb)。对于更长的平均时间(最长1200 s),根据艾伦方差分析估计这些检测极限最多可提高3倍。确定了两个系统误差源,并讨论了消除它们的方法,包括波长去相关的斑点干扰和放大的自发辐射的种子功率依赖性。在30秒的测量时间内,干燥空气中CO2和CH4的回收准确度分别估计为4μmol / mol(环境水平的1%)和50 nmol / mol(3%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号