...
首页> 外文期刊>Applied optics >Unified field analysis method for IR/MW micro-mirror array beam combiner
【24h】

Unified field analysis method for IR/MW micro-mirror array beam combiner

机译:红外/微波微镜阵列合束器统一场分析方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The aperture field integration method (AFIM) is proposed and utilized to efficiently compute the field distributions of infrared/microwave (IR/MW) micro-mirror array beam combiners, including the MW near-field distribution and the IR far-field distribution. The MW near-field distributions of single-dielectric-layer beam combiners with 1, 11, and 101 micromirrors are analyzed by AFIM. Compared to the commonly used multilevel fast multipole method (MLFMM) in the computation of MW near-field distribution, the memory requirement and CPU time consumption are reduced drastically from 16.92 GB and 3.26 h to 0.66 MB and 0.55 s, respectively. The calculation accuracy is better than 96%, when the MW near-field distribution is computed. The IR far-field computational capability is validated by comparing the results obtained through AFIM and experiment. The MW near field and IR far field of a circular and a square shape of three-layer micro-mirror array beam combiners are also analyzed. Four indicators E_(pv), E_(rms), φ_(pv), and φ_(rms) representing the amplitude and phase variations are proposed to evaluate the MW near-field uniformity. The simulation results show that the increase of beam combiner size can improve the uniformity of the MW near field, and that the square shape has less influence on the uniformity of the MW near field than the circular one. The zeroth-order diffraction primary maximum intensity of the IR far field is decreased by 1/cos~2 α_0 times compared to that of the equivalent mirror, where α_0 is the oblique angle of each micromirror. When the periodic length of the micro-mirror array is less than 0.1 mm, the position of the secondary maximum will exceed the size of the focal plane array. Simultaneously, the half-width of the zeroth-order diffraction primary maximum is less than the size of a single pixel. Thus, IR images with high quality will be obtained. The simulation results show that the AFIM as a unified method can be applied to design, analyze, evaluate, and optimize IR/MW micro-mirror array beam combiners.
机译:提出并利用孔径场积分法(AFIM)来有效地计算红外/微波(IR / MW)微镜阵列合束器的场分布,包括MW近场分布和IR远场分布。通过AFIM分析了具有1、11和101个微镜的单介质层合束器的MW近场分布。与通常的多级快速多极方法(MLFMM)在MW近场分布的计算中相比,内存需求和CPU时间消耗从16.92 GB和3.26 h大幅减少到0.66 MB和0.55 s。计算MW近场分布时,计算精度优于96%。通过比较通过AFIM和实验获得的结果,验证了红外远场计算能力。还分析了三层微镜阵列合束器的圆形和正方形的MW近场和IR远场。提出了四个代表幅度和相位变化的指标E_(pv),E_(rms),φ_(pv)和φ_(rms)来评估MW近场均匀性。仿真结果表明,增加合束器的尺寸可以提高微波近场的均匀性,与圆形相比,正方形对微波近场的均匀性影响较小。与等效镜相比,红外远场的零阶衍射初级最大强度降低了1 / cos〜2α_0倍,其中α_0是每个微镜的倾斜角。当微镜阵列的周期长度小于0.1mm时,次要最大值的位置将超过焦平面阵列的尺寸。同时,零阶衍射初级最大值的半角宽度小于单个像素的大小。因此,将获得高质量的IR图像。仿真结果表明,AFIM作为一种统一的方法可以应用于IR / MW微镜阵列合束器的设计,分析,评估和优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号