...
首页> 外文期刊>Applied optics >Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces
【24h】

Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces

机译:微观发射和反射热红外光谱:复杂行星表面定量原位矿物学的仪器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft payload. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often >5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically <2 to 3). Since this style of instrument is based on a long heritage of thermal infrared emission spectrometers sent to orbit (the thermal emission spectrometer), sent to planetary surfaces [the mini-thermal emission spectrometers (mini-TES)], and evaluated in laboratory environments (e.g., the Arizona State University emission spectrometer laboratory), direct comparisons to existing data are uniquely possible with this style of instrument. The ability to obtain bulk mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars. Miniaturization of this instrument has also been demonstrated, as the same microscope objective has been mounted to a flight-spare mini-TES. Further miniaturization of this instrument is straightforward with modern electronics, and the development of this instrument as an arm-mounted device is the end goal.
机译:在过去的十年中,使用原位仪器对行星表面(尤其是火星)进行研究的多样性在我们太阳系的探索历史上是前所未有的。着陆航天器可以支持的仪器类型取决于几个参数,包括质量,功耗,仪器复杂性,成本和所需的测量类型(例如化学,矿物学,岩石学,形态等),所有这些都必须是在确定合适的航天器有效载荷时进行评估。我们提出了一种用于显微发射和反射光谱仪的实验室技术,用于分析火星模拟材料,是下一代原位仪器的强大候选者,这些仪器旨在最终评估样品的矿物学和岩石学,同时保留地质背景。我们讨论了仪器的功能,信号和噪声以及整体系统性能。我们评估了该仪器定量确定样品矿物学(包括大量矿物丰度)的能力。此功能大大增强。从现有的发射光谱仪观察到的矿物成分数量很高(通常大于5到10,具体取决于所存在的辅助相和蚀变相的数量),而在任何微观测量点上的矿物成分数量都很少(通常<2到3) 。由于这种类型的仪器是基于将红外热辐射光谱仪(发射光谱仪)送入轨道,发送到行星表面(微型热辐射光谱仪(mini-TES))并在实验室环境中进行评估的悠久传统而建立的(例如,亚利桑那州立大学的发射光谱仪实验室),使用这种仪器就可以与现有数据进行直接比较。与小型TES一样,获得大量矿物学和大气数据的能力具有重要的附加价值,并保持了火星大气监测的悠久历史。还证明了该仪器的小型化,因为同一显微镜物镜已安装在飞行备用的mini-TES上。借助现代电子设备,可以进一步使该仪器进一步小型化,并且最终将其开发为手臂安装式设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号