...
首页> 外文期刊>Applied optics >Computational performance comparison of wavefront reconstruction algorithms for the European Extremely Large Telescope on multi-CPU architecture
【24h】

Computational performance comparison of wavefront reconstruction algorithms for the European Extremely Large Telescope on multi-CPU architecture

机译:欧洲超大型望远镜在多CPU架构上的波前重建算法的计算性能比较

获取原文
获取原文并翻译 | 示例
           

摘要

The European Southern Observatory (ESO) is studying the next generation giant telescope, called the European Extremely Large Telescope (E-ELT). With a 42 m diameter primary mirror, it is a significant step from currently existing telescopes. Therefore, the E-ELT with its instruments poses new challenges in terms of cost and computational complexity for the control system, including its adaptive optics (AO). Since the conventional matrix-vector multiplication (MVM) method successfully used so far for AO wavefront reconstruction cannot be efficiently scaled to the size of the AO systems on the E-ELT, faster algorithms are needed. Among those recently developed wavefront reconstruction algorithms, three are studied in this paper from the point of view of design, implementation, and absolute speed on three multicore multi-CPU platforms. We focus on a single-conjugate AO system for the E-ELT. The algorithms are the MVM, the Fourier transform reconstructor (FTR), and the fractal iterative method (FRiM). This study enhances the scaling of these algorithms with an increasing number of CPUs involved in the computation. We discuss implementation strategies, depending on various CPU architecture constraints, and we present the first quantitative execution times so far at the E-ELT scale. MVM suffers from a large computational burden, making the current computing platform undersized to reach timings short enough for AO wavefront reconstruction. In our study, the FTR provides currently the fastest reconstruction. FRiM is a recently developed algorithm, and several strategies are investigated and presented here in order to implement it for real-time AO wavefront reconstruction, and to optimize its execution time. The difficulty to parallelize the algorithm in such architecture is enhanced. We also show that FRiM can provide interesting scalability using a sparse matrix approach.
机译:欧洲南部天文台(ESO)正在研究下一代巨型望远镜,称为欧洲超大型望远镜(E-ELT)。有了42 m直径的主镜,这是当前现有望远镜的重要一步。因此,E-ELT及其仪器给控制系统(包括其自适应光学系统(AO))的成本和计算复杂性带来了新的挑战。由于到目前为止成功地用于AO波前重建的常规矩阵矢量乘法(MVM)方法无法有效地缩放到E-ELT上AO系统的大​​小,因此需要更快的算法。在最近开发的那些波前重构算法中,本文从三个多核多CPU平台的设计,实现和绝对速度的角度研究了三个。我们专注于E-ELT的单共轭AO系统。这些算法是MVM,傅立叶变换重建器(FTR)和分形迭代方法(FRiM)。这项研究随着计算中所涉及的CPU数量的增加,增强了这些算法的可扩展性。我们将根据各种CPU体系结构约束来讨论实现策略,并以E-ELT规模介绍迄今为止的第一个定量执行时间。 MVM承受着巨大的计算负担,使得当前的计算平台尺寸过小,无法达到足够短的时序来进行AO波前重建。在我们的研究中,FTR提供了目前最快的重建。 FRiM是最近开发的算法,在此研究并提出了几种策略,以便将其实现用于实时AO波前重建,并优化其执行时间。在这种架构中,使算法并行化的难度增加了。我们还表明,FRiM可以使用稀疏矩阵方法提供有趣的可伸缩性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号