...
首页> 外文期刊>Angewandte Chemie >Synthesis of Stable Peptide Nucleic Acid-Modified Gold Nanoparticles and their Assembly onto Gold Surfaces
【24h】

Synthesis of Stable Peptide Nucleic Acid-Modified Gold Nanoparticles and their Assembly onto Gold Surfaces

机译:稳定肽核酸修饰的金纳米粒子的合成及其在金表面的组装

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

DNA-based gold-nanoparticle (AuNP) systems are currently employed in a growing range of applications, which include gene regulation, nanofabrication, sensing, and plasmonic rulers. However, a disadvantage of the assembly of DNA-modified NPs is the need for salt to keep their assemblies stable. Halogens are known to damage silver nanoparticles (AgNPs), while the addition of salt in general destabilizes colloidal particles. Additionally, the presence of substantial amounts of ions is problematic for the study and use of physical phenomena that rely on electrostatics. Thus, the functionalization of nanoparticles with the non-natural DNA analogue peptide nucleic acid (PNA), instead of DNA, is extremely attractive. PNA has many advantages over DNA including a higher stability against biodegradation, greater mismatch sensitivity, and higher binding efficiency to PNA, DNA, and RNA. Hence, shorter oligonucleotide strands could potentially be used for the assembly of PNA-function-alized AuNPs compared to those required for stable DNA-based assembly. An increase in the resolution control of close-packed gold nanoparticles could therefore be observed. Additionally, the stability of PNA-DNA and PNA-PNA hybrids is independent of the ionic strength of the medium.1'1 In comparison, DNA alone is not able to form assemblies under ion-free conditions as the electrostatic repulsion between the negatively charged strands is too high. Therefore, AuNP assemblies relying on PNA hybridization could be formed without the addition of salt, unlike DNA-AuNP hybrids. Despite the huge potential of PNA-based AuNPs, there are only a few articles reporting the direct attachment of PNA onto AuNPs.
机译:基于DNA的金纳米粒子(AuNP)系统目前在越来越多的应用程序中使用,包括基因调控,纳米加工,传感和等离激元统治者。然而,DNA修饰的NP组装的缺点是需要盐以保持其组装稳定。众所周知,卤素会破坏银纳米颗粒(AgNPs),而通常添加盐会使胶体颗粒不稳定。另外,大量离子的存在对于研究和使用依赖于静电的物理现象是有问题的。因此,用非天然DNA类似物肽核酸(PNA)代替DNA对纳米颗粒的功能化非常有吸引力。与DNA相比,PNA具有许多优势,包括更高的抗生物降解稳定性,更高的错配敏感性以及与PNA,DNA和RNA的更高结合效率。因此,与稳定的基于DNA的组装所需的寡核苷酸链相比,可将较短的寡核苷酸链潜在地用于PNA功能化的AuNP的组装。因此,可以观察到紧密堆积的金纳米颗粒的分辨率控制提高。此外,PNA-DNA和PNA-PNA杂化物的稳定性与介质的离子强度无关。1'1相比之下,仅DNA不能在无离子条件下形成组装体,因为带负电荷的静电排斥力股太高。因此,与DNA-AuNP杂种不同,可以在不添加盐的情况下形成依赖PNA杂交的AuNP组件。尽管基于PNA的AuNP具有巨大的潜力,但只有少数文章报道了PNA直接附着在AuNP上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号