...
首页> 外文期刊>Angewandte Chemie >Bypassing the Limitations of Classical Chemical Purification with DNA-Programmable Nanoparticle Recrystallization
【24h】

Bypassing the Limitations of Classical Chemical Purification with DNA-Programmable Nanoparticle Recrystallization

机译:通过DNA可编程的纳米颗粒重结晶技术绕过经典化学纯化法的局限

获取原文
获取原文并翻译 | 示例
           

摘要

Crystallization is a common and invaluable tool in chemistry for obtaining compounds with a high degree of purity. In a mixture of two or more species, conditions are found in which the desired component is able to selectively form a crystalline structure that excludes impurity species which are unable to incorporate into the ordered lattice formed by the product. This process has been used to purify myriad organic molecules, resolve racemic mixtures with chiral additives, and even separate complex protein mixtures to arrive at samples of maximum homogeneity. Without such tools to obtain materials that are uniform in their structure, function, and composition, elucidation of their chemical and physical properties would be extremely challenging and, in some cases, impossible. Interestingly, a host of anisotropic nanoparticle syntheses currently suffer from an analogous problem as the aforementioned molecular systems—the presence of impurity nanostructures with disparate shapes that obviate a variety of measurements, confound data analysis, and preclude potential applications. Surprisingly few separation methods exist for addressing this challenge and it has been shown that conventional methods for crystallizing nanoparticles based on drying effects or capillary forces are not effective at separating differently shaped nanoparticles.
机译:结晶是化学中获得高纯度化合物的常用且不可估量的工具。在两种或更多种物质的混合物中,发现了这样的条件,其中所需的组分能够选择性地形成晶体结构,该晶体结构排除了不能掺入产物形成的有序晶格中的杂质物质。此过程已用于纯化多种有机分子,与手性添加剂拆分外消旋混合物,甚至分离复杂的蛋白质混合物,从而获得最大同质性的样品。如果没有这样的工具来获得结构,功能和组成均一的材料,那么阐明其化学和物理性能将极具挑战性,在某些情况下甚至是不可能的。有趣的是,许多各向异性的纳米粒子合成目前面临着与上述分子系统类似的问题:存在形状各异的杂质纳米结构,从而无法进行多种测量,混淆数据分析并排除了潜在的应用。出乎意料的是,很少有分离方法可以解决这一难题,并且已经表明,基于干燥作用或毛细作用力使纳米颗粒结晶的常规方法在分离不同形状的纳米颗粒方面无效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号