...
首页> 外文期刊>Angewandte Chemie >An Advanced Selenium-Carbon Cathode for Rechargeable Lithium-Selenium Batteries
【24h】

An Advanced Selenium-Carbon Cathode for Rechargeable Lithium-Selenium Batteries

机译:用于可充电锂硒电池的高级硒碳正极

获取原文
获取原文并翻译 | 示例
           

摘要

The rapidly developing market for mobile electronics and hybrid electric vehicles (HEVs) has prompted the urgent need for batteries with high energy density, long cycle life, high efficiency, and low cost. Recently, rechargeable lithium-sulfur (Li-S) batteries have attracted considerable attention because of their high theoretical gravimetric (volumetric) energy density of 2570 Whkg~(-1) (2200 Whir~(-1)), and low cost. However, the use of S as cathode material for Li-S batteries suffers from two major issues. One is the insulating nature of S, which results in low active-material utilization and limited rate capability. The other is the formation of electrolytesoluble polysulfides; these polysulfide intermediates, which are generated in the discharge/charge process, dissolve in the electrolyte and migrate to the Li anode, a process known as the shuttle effect. Consequently, the S cathode suffers a significant loss of S during cycling, resulting in a rapid capacity decrease. Many strategies have been used to address these problems, such as the impregnation of S into various conductive porous matrixes, surface coating of S, and the use of suitable electrolytes and additives. Although remarkable improvements have been achieved, the application of Li-S batteries is still hindered by the intrinsic drawbacks of S. Therefore, it is of great importance to explore and develop new high-energy cathode materials with improved electronic conductivity and cycling stability, to cover the shortfalls of S and provide alternative choices for practical applications.
机译:移动电子和混合动力汽车(HEV)的快速发展的市场促使迫切需要具有高能量密度,长循环寿命,高效率和低成本的电池。近来,可再充电锂-硫(Li-S)电池由于其2570 Whkg·(-1)(2200 Whir·(-1))的高理论重量(体积)能量密度和低成本而备受关注。然而,使用S作为Li-S电池的正极材料存在两个主要问题。一个是S的绝缘性,这导致活性材料利用率低和速率限制功能。另一种是形成可溶于电解质的多硫化物。这些在放电/充电过程中产生的多硫化物中间体溶解在电解质中并迁移到Li阳极,这一过程称为穿梭效应。因此,S阴极在循环期间遭受显着的S损失,导致容量快速降低。已经使用许多策略来解决这些问题,例如将S浸渍到各种导电多孔基质中,S的表面涂层以及使用合适的电解质和添加剂。尽管已经取得了显着的进步,但S的固有缺点仍然阻碍了Li-S电池的应用。因此,探索和开发具有改善的电子电导率和循环稳定性的新型高能阴极材料具有非常重要的意义。弥补S的不足,并为实际应用提供替代选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号