...
首页> 外文期刊>Angewandte Chemie >Directed Manipulation of a Flavoprotein Photocycle
【24h】

Directed Manipulation of a Flavoprotein Photocycle

机译:直接操纵黄素蛋白光循环

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We have recently characterized the role of the riboflavinbinding protein (RfBP) dodecin from Halobacterium salinarum as clearing free riboflavin from the cytoplasm with riboflavin protein dissociation constants in the low nanomolar range, and as providing riboflavin as the direct precursor for FMN and FAD biosynthesis. To prevent cellular damage, dodecin seals riboflavin in deeply buried binding cavities and neutralizes riboflavin reactivity by extensively quenching photoactivated states. Both properties are achieved by a remarkable binding mode. Binding to dodecin, riboflavin aligns into a sandwich of aromatic systems in which extensive stacking compensates for minimal hydrogen bonding (Figure 1). In the key step of the relaxation process of the light-activated riboflavin, an electron of tryptophan W36 is transferred to the excited flavin, generating a charge-separated intermediate state that subsequently recombines to the ground state. Recently, we were able to assign time constants to the individual processes in the photocycle of dodecin: 1) charge separation faster than the resolution of the experiment (< 0.2 ps, τ1) ; 2) electron back-transfer with a time constant of 0.9 ps (τ2) ; (3) a relaxation process with 6 ps parallel to (2) with an intermediate absorbing at 500 nm (τ3) ; and (4) proton transfer from the surrounding water coupled with the electron-transfer/back-transfer cycle (Scheme 1). Based on high-resolution X-ray structural data and a concise functional characterization, establishing a system of extraordinarily well-defined structure-function relationships, we considered dodecin as excellently suited for modulating biological electron-transfer reactions by rational protein design, thereby studying the protein in a manipulative manner.
机译:我们最近已表征了来自盐杆菌的核黄素结合蛋白(RfBP)十二烷的作用,它是从细胞质中清除具有低纳摩尔浓度的核黄素蛋白解离常数的游离核黄素,并提供核黄素作为FMN和FAD生物合成的直接前体。为了防止细胞损伤,十二烷将核黄素封闭在深埋的结合腔中,并通过广泛淬灭光活化状态来中和核黄素反应性。两种特性均通过出色的结合模式实现。与核黄素结合后,核黄素排列成一个芳香族体系的三明治,其中大量的堆积补偿了最小的氢键(图1)。在光活化核黄素松弛过程的关键步骤中,色氨酸W36的电子转移到激发的黄素上,产生电荷分离的中间态,随后重组为基态。最近,我们能够为十二烷的光周期中的各个过程分配时间常数:1)电荷分离的速度快于实验的分辨率(<0.2 ps,τ1); 2)电子反向传输,其时间常数为0.9 ps(τ2); (3)平行于(2)的6 ps弛豫过程,中间在500 nm(τ3)处吸收; (4)质子从周围的水中转移,并伴随着电子转移/反向转移循环(方案1)。基于高分辨率的X射线结构数据和简洁的功能表征,建立了结构非常明确的结构-功能关系系统,我们认为十二碳素非常适合通过合理的蛋白质设计来调节生物电子转移反应,从而研究了操纵性蛋白质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号