...
首页> 外文期刊>Angewandte Chemie >Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction
【24h】

Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction

机译:空间约束诱导的吡啶和吡咯氮掺杂石墨烯的合成,用于催化氧还原

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The development of high-performance and low-cost catalytic materials for the oxygen reduction reaction (ORR) has been a major challenge for the large-scale application of fuel cells. Currently, platinum and platinum-based alloys are the most efficient ORR catalysts in fuel-cell cathodes ; however, they cannot meet the demand for the widespread commercialization of fuel cells because of the scarcity of platinum. Thus, the ongoing search for platinum-free catalysts for the ORR has attracted much attention. Graphene, single-layer sheets of sp~2-hybridized carbon atoms, has attracted tremendous attention and research interest. The abundance of free-flowing π electrons in carbon materials composed of sp~2-hybridized carbon atoms makes these materials potential catalysts for reactions that require electrons, such as the ORR. However, these π electrons are too inert to be used directly in the ORR. In N-doped electron-rich carbon nanostructures, carbon π electrons have been shown to be activated through conjugation with lone-pair electrons from N dopants; thus, O2 molecules are reduced on the positively charged C atoms that neighbor N atoms. Recently, Hu and co-workers found that as long as the electroneutrality of the sp~2-hybridized carbon atoms is broken and charged sites that favor O2 adsorption are created, these materials will be transformed into active metal-free ORR electrocatalysts regardless of whether the dopants are electron-rich (e.g., N) or electron-deficient (e.g., B). Nitrogen-doped carbon (NC) materials are considered to be promising catalysts because of their acceptable ORR activity, low cost, good durability, and environmental friendliness. However, their ORR activity is less competitive, especially in acidic media. Relative to commercial Pt/C, the difference in the half-wave potential for ORR is within 25 mV in alkaline electrolytes but is greater than 200 mV in acidic electrolytes. The activity of NC materials can be enhanced through efficient N doping with sufficient active species that favor ORR and through an increase in electrical conductivity.
机译:用于氧气还原反应(ORR)的高性能,低成本催化材料的开发一直是燃料电池大规模应用的主要挑战。当前,铂和铂基合金是燃料电池阴极中最有效的ORR催化剂。然而,由于铂的缺乏,它们不能满足燃料电池广泛商业化的需求。因此,对于ORR的无铂催化剂的持续研究引起了很多关注。石墨烯,sp〜2-杂化碳原子的单层片,引起了极大的关注和研究兴趣。由sp〜2杂化的碳原子组成的碳材料中大量自由流动的π电子使这些材料成为需要电子的反应(如ORR)的潜在催化剂。但是,这些π电子过于惰性,无法直接在ORR中使用。在N掺杂的富电子碳纳米结构中,碳π电子已显示出与N掺杂物的孤对电子共轭而被激活。因此,O2分子在与N原子相邻的带正电的C原子上被还原。最近,Hu和他的同事发现,只要sp〜2-杂化碳原子的电中性被破坏并且形成有利于O2吸附的带电位,这些材料就会被转化为无活性金属的ORR催化剂,无论是否掺杂剂是富电子的(例如,N)或贫电子的(例如,B)。氮掺杂碳(NC)材料因其可接受的ORR活性,低成本,良好的耐久性和环境友好性而被认为是有前途的催化剂。但是,它们的ORR活性竞争力较弱,尤其是在酸性介质中。相对于商用Pt / C,碱性电解液中ORR的半波电势差在25 mV以内,而在酸性电解液中则大于200 mV。 NC材料的活性可以通过有效的N掺杂并添加足够多的有利于ORR的活性物质以及提高电导率来实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号